

EMERSE

Electronic Medical Record Search Engine

Technical Manual

project-emerse.org

David Hanauer <hanauer@umich.edu>

Last updated March 27, 2015

Important Note

This Technical Manual is a work-in-progress. We welcome any feedback to improve it,
including corrections, additions, and other clarifications. If at any point you get stuck or run into
problems, please contact us so we can help. The main point of contact is David Hanauer
<hanauer@umich.edu>.

Future plans for EMERSE

For those wondering what is planned for EMERSE, here are a few items:

o Addition of an ‘advanced’ search option to allow power users to use regular expressions.
o Ability to search across all patients, without first defining a patient cohort
o Ability to search imaged/scanned documents
o Filters for reducing results returns (eg, only certain document types)
o Additional synonyms (they are already being added periodically)
o Improved attestation screens
o Ability to mark patients as being of interest or not, possibly to record other notes as well.
o New timeline data visualization
o Improved help screens for users
o If adoption beyond U of Michigan occurs, sharing of synonyms and search term bundles

across instances
o More security, including the ability to prevent certain users from being able to look up

patients (essentially limiting them to specific patient lists)
o Shared patient lists (to specific individuals, not to everyone like the bundles)

Still to do for this Manual:

* Discuss synonyms and how to add/update

* Discuss authenticating users with LDAP or others

* How to add users

* How to delete users

* Sys admin features, if any

* Queries to check on system stats

Background

EMERSE is the Electronic Medical Record Search Engine. It was designed to work with the free
text (unstructured) clinical documents in an electronic health record (EHR) system. Most
importantly, EMERSE was made for regular users, not those with IT or informatics expertise. It
was developed at the University of Michigan in 2005 and has been continuously improved and
updated since then. EMERSE has been used to support a variety of tasks, including clinical and
translational research, internal quality improvement and quality assurance initiatives, as well as
for hospital operational support tasks. It has been used very successfully by the billing and
coding team for complex case reviews, improving reimbursement rates by nearly $1 million per
year. The software is used routinely by our compliance office, risk management, and infection
control departments. It has also been used in the clinical setting, to support rapid data retrieval
to answer clinical questions as well as to reduce the burden of prior authorizations, required by
many insurance companies. EMERSE has also been used to support hundreds of research
projects, resulting in many peer-reviewed publications.

EMERSE can integrate documents from multiple sources. At the University of Michigan,
EMERSE has tens of millions of documents, including those from our original, homegrown EHR
system, CareWeb, as well as newer documents from our replacement vendor EHR, Epic.
EMERSE was designed to be vendor-neutral -- as long as you can get your documents out of
the system, EMERSE should be able to search through them. We've even created an interface
to move cohorts identified through the i2b2 Workbench directly into EMERSE for further
searching of their free text notes.

EMERSE was created with support from the University of Michigan Comprehensive Cancer
Center, the CTSA-supported Michigan Institute for Clinical and Health Research (MICHR), the
University of Michigan Health System through the Medical Center Information Technology
(MCIT) Department, and the University of Michigan Medical School through the Medical School
Information Services (MSIS) Department. We are making EMERSE available at no cost for
academic use, and for a reasonable fee to support ongoing development for other uses.

EMERSE provides features to help get your work done quickly and accurately. For example, the
tool includes a large list of synonyms and related keywords to help you expand your search
even if you don't know the right terms to use. This includes a large collection of trade and
generic drug names, acronyms and abbreviations, and other wording variations including
spelling errors.

EMERSE also provides intuitive and novel ways to visualize the search results, to help users
focus on the information they need. For example, search results can be viewed as a 'heat map',
showing the density of documents with a search hit, as well as what we call the 'mosaic view'
which shows which specific terms appear for each patient in the search results.

Before you start

To be able to get EMERSE up and running there are several things you should know.

While the system was designed to be simple to use for non-technical people, installing the
system requires significant technical expertise, and will likely need some degree of local
customization. We expect those installing EMERSE will have expertise or experience in
databases (SQL), Apache Lucene and Solr, and web servers such as Apache Tomcat.

Once a license has been signed (no cost for academic use) we can provide a fully operational
system on a virtual machine that includes PubMed abstracts as an example data source. This
is good for understanding how the system works, but is not ideal for operational use. We can
also provide the system packed up as a .war file which can be placed in to the Tomcat
webapps directory as described in the instruction. If you want the original source code, we can
send an export of an Eclipse project. The source build is easiest if you use the brand of Eclipse
that we use (spring source toolsuite), but it can also be built via Maven/command line.

It is also important to remember that if your institution will be using EMERSE to search clinical
documents, it is necessary to ensure that all security and privacy regulations are followed.
EMERSE should be installed by IT and informatics professionals who are familiar with the
requirements for securing protected health information and maintaining the right infrastructure/IT
environment to ensure that the data remain secure behind a firewall.

Hardware Requirements

Like most systems, EMERSE will always perform better with faster hardware. However, it
should be possible to get a reasonably performing system without major investment. At the
University of Michigan our production system is currently running on a 4-core Intel box with 12
GB RAM. Indices are store on a hard disk-based SAN, currently with 2 TB allocated. Solid state
drive (SSD) storage would be expensive but would definitely improve the performance of the
system. We estimate that performance would be increased by a factor of 2, potentially more.

With local hosting, we estimate an upfront hardware cost of $10-20k, but that range could be
very different depending on the local cost of hardware at your institution. Some of this will
depend on how many users (especially number of concurrent users) you expect, and fewer
users You could, of course use less expensive hardware, but please remember that the user
experience is vital for the success of EMERSE, and fast response times are vital to a good user
experience.

We recommend that the Oracle database that supports EMERSE be on a separate server from
EMERSE itself, but they could both reside on the same server if needed.

It also possible to run everything on virtual machines but we generally do not recommend that
approach. Depending on the VM configuration and host, performance is generally better when
the server process connected to the disk is not through a virtualized storage layer. This is
because the underlying Lucene indexes used by EMERSE should be as low latency/high
throughput as is practical.

High Level Overview of Core Components

There are three inter-related but distinct components needed for a full installation of EMERSE. It
is important to note that components (1) and (2) are necessary for EMERSE to run, but getting
these two components up and running are independent of setting up EMERSE. We do provide
guidance on the issues related to these two components. It is also worth noting that
components (1) and (2) would likely be required for any type of search engine you would
implement.

(1) Document repository or repositories

This is needed for Lucene to locate and index documents. This repository is not needed at run-
time for EMERE since it is not accessed by EMERSE. Rather, Lucene will create its own local
copy when creating the indices. Lucene can be pointed to multiple sources, and it is not entirely
necessary that you create a standalone document repository (you could, for example, connect
Lucene directly to your EHR using whatever APIs are available). However, we recommend use
of the repository since it will make it easier to handle and track instances when documents have
changed (last updated, for example) as well as complete re-indexing (as opposed to
incremental indexing) which may be required from time to time.

(2) Apache Lucene

EMERSE leverages the Apache Lucene library (jar files) to tokenize document texts in a format
that enables fast retrieval. When users execute a search within EMERSE, the application code
uses the Lucene API to open the index files and search for matching documents. The EMERSE
application itself does not provide functionality to build the Lucene index files needed by the
application. At UMHS, Apache SOLR is used to aid with the creation and maintenance of
Lucene formatted indexes. It is a web based application that provides REST oriented API's that
enable adding and removing content from Lucene indexes. At UMHS, as data from source
systems changes, the changed documents are retrieved from the system and sent to the SOLR
API for inclusion in EMERSE.

(3) EMERSE

The EMERSE software runs independently of, but is dependent upon, functional Lucene
indices. At startup, EMERSE is pointed at the pre-existing Lucene indices, and then the magic
happens.

Code Dependencies

EMERSE leverages multiple open source components, which are listed below.

Server side dependencies

groupId artifactId version license more info

org.springframework spring-core 3.1.0.RELEASE Apache 2

org.springframework spring-context 3.1.0.RELEASE Apache 2

org.springframework spring-beans 3.1.0.RELEASE Apache 2

org.springframework spring-aop 3.1.0.RELEASE Apache 2

org.springframework spring-tx 3.1.0.RELEASE Apache 2

org.springframework spring-webmvc 3.1.0.RELEASE Apache 2

org.springframework spring-aspects 3.1.0.RELEASE Apache 2

org.springframework.security spring-security-core 3.1.0.RELEASE Apache 2

org.springframework.security spring-security-config 3.1.0.RELEASE Apache 2

org.springframework.security spring-security-web 3.1.0.RELEASE Apache 2

org.springframework.security spring-security-ldap 3.1.0.RELEASE Apache 2

org.springframework spring-jms 3.1.0.RELEASE Apache 2

org.aspectj aspectjrt 1.6.8 Eclipse 1.0

org.aspectj aspectjweaver 1.6.8 Eclipse 1.0

org.springframework spring-orm 3.1.0.RELEASE Apache 2

org.hibernate hibernate-core 3.6.7.Final LGPL 2.1

org.hibernate hibernate-entitymanager 3.6.7.Final LGPL 2.1

org.hibernate hibernate-envers 3.6.7.Final LGPL 2.1

oracle oracle-driver* 11.1.0.7.0 OTN
http://www.oracle.com/technetwork/licenses/d
istribution-license-152002.html

c3p0 c3p0 0.9.1.1 LGPL 2.0

junit junit 4.8.1 Eclipse 1.0

org.codehaus.jackson jackson-core-asl 1.8.5 Apache 2

org.codehaus.jackson jackson-mapper-asl 1.8.5 Apache 2

org.springframework.webflow spring-js 2.3.0.RELEASE Apache 2

org.slf4j slf4j-log4j12 1.6.0 MIT

commons-logging commons-logging 1.1.3 Apache 2

log4j log4j 1.2.17 Apache 2

commons-httpclient commons-httpclient 3.1 Apache 2

commons-fileupload commons-fileupload 1.2 Apache 2

commons-io commons-io 1.3.2 Apache 2

org.apache.activemq activemq-client 5.8.0 Apache 2

org.apache.activemq activemq-broker 5.8.0 Apache 2

net.sf.trove4j trove4j 3.1a1 BSD

org.springframework.batch spring-batch-core 2.1.0.RELEASE Apache 2

org.springframework.integration spring-integration-core 2.0.4.RELEASE Apache 2

org.springframework.integration spring-integration-jms 2.0.4.RELEASE Apache 2

org.springframework.integration spring-integration-stream 2.0.4.RELEASE Apache 2

org.springframework.integration spring-integration-jmx 2.0.4.RELEASE Apache 2

org.apache.solr solr-core 4.7.2 Apache 2

joda-time joda-time 1.6 Apache 2

Client JavaScript dependencies

name version license more info
jquery 1.7.1 MIT/GPL
keyboard.js 0.2.2 https://github.com/RobertWHurst/KeyboardJS/blob/master/license.txt

date.js 1.0 Alpha-1 MIT http://www.datejs.com/
json2.js PUBLIC http://www.JSON.org/json2.js
amplify.js MIT
knockout-2.1.0 2.1.0 MIT
knockout-
validation 1 MIT

jquery-ui 1.8.16 MIT/GPL
jquery-idletimer 0.8.092209 MIT
jquery-json 2.3 MIT
jquery.iframe 1.2.5 MIT
jquery.fileupload 5.5.2 MIT/GPL
jquery.balloon 3.0 MIT/GPL
jquery.metadata MIT/GPL
jquery.rating 3.14 MIT/GPL

Document Repository

While not entirely necessary, we recommend a document repository for Lucene to use.
Documents do not need to be in a single repository, since it is possible to point Lucene to
multiple repositories if needed. We recommend using a standard SQL database (Oracle,
MySQL, PostgresSQL, etc) because of its support for backup/restore, etc. Also, we have found
that it is easier to use such a database to keep track of document changes that occur after
indexing. This allows us to more quickly identify documents that may need re-indexing. In
theory it could be possible to point EMERSE directly at an electronic health record system if the
right APIs are in place, but this might make it much harder to identify incremental changes in the
data and thus might require much broader scanning of the entire repository each time for any
potential changes.

It is also easier to manage data this way. When a new document source is to be added, one
only needs to create a new table with the documents and metadata, and then populate the table
with the source data. (Of course, one still will need to update Lucene to point to this new table,
and to add the source into EMERSE as well.)

At the University of Michigan we use Oracle for our document stores (we have more than one),
and the stores are organized by source systems. These stores include the documents
themselves as well as metadata including medical record number, document date, last updated,
as well as details that depend on the source such as clinical service, clinical provider name, etc.
These metadata are used in the display for the users within EMERSE, although last updated is
important for knowing if a document needs to be re-indexed.

Note that this document repository is not a core part of EMERSE and is not something that we
set up or include in the EMERSE software. It is, however, a pre-requisite for Lucene to be able
to retrieve and index the documents. It actually does not need to be running for EMERSE to
function, but must be up and running when indexing by Lucene is occurring. Lucene makes a
copy of the document it indexes, so Lucene serves up the documents at runtime for EMERSE,
not the document repository.

Documents should ideally be in the form of plain ASCII text or HTML. At Michigan, since we
also receive documents in RTF format, we use a commercial software package (Aspose.Words,
http://www.aspose.com/word-component-suite.aspx) to perform this conversion
from RTF to HTML for storage in our repository.

To capture clinical notes that reside in Epic, an HL7 based interface that emits HL7 messages
containing the note in RTF format when notes are edited and signed has been configured. A
java process then takes the content of the messages, and converts them to HTML using
Aspose.Words, and stores it in the document repository. Available metadata in the HL7
message is also stored in the repository along with the note, such as encounter date,
department, and edit date. We recommend that you try to only include finalized, or ‘signed’

notes in the repository to prevent the need to continually monitor for document changes and
frequent re-processing and re-indexing.

A small amount of Java code was written to retrieve the documents from the repository and
other UMHS datasources via JDBC, and execute the SOLR API to update EMERSE’s Lucene
indixes. This code is executed periodically to keep the Lucene indixes up to date. This code is
not part of the standard EMERSE release since the specific needs will vary for each institution.

 For example, if PDF documents are stored, one could use a tool like Apache Tika to extract
the text to present it to Solr.

EMERSE Deployment Guide

Deployment Overview

The high level items involved in deploying EMERSE include preparing the application server,
initializing the database, and configuring the Lucene indices. These instructions will guide you
through each of these topics. The diagram below illustrates the high-level architecture of
EMERSE. Additional information related to customizing the Lucene indices to adapt EMERSE to
your specific environment can be found later in this document.

Figure. High-level architecture diagram.

Pre-Requisites

This guide assumes a few pre-requisite infrastructure items are already in place:

1. An Oracle server should be installed on a server and an account/schema created that
allows full access to create common database objects, such as sequences, tables,
indices etc. EMERSE doesn’t place great demand on the Oracle database, so a
relatively small server can be used with 10-50 gigs of storage allocated for user
tablespaces.	 Currently at the University of Michigan we are using only 3 GB of space for
production EMERSE with 600+ users and 2 years of data.

2. A Linux/Unix based server that will be used to install the application server and host the
indexing services. This server should be connected to the highest speed storage
available. Capacity is dependent on number of documents to be indexed. At UMHS 600
GB is in use to host approximately 80 million documents. If your documents are heavily
formatted (such as RTF instead of TXT), storage requirements will be higher.

Application Server Installation

This section covers the process of installation and configuring of the application server where
the EMERSE application will be deployed. An instance of Apache Active MQ, an EMERSE
dependency will also be installed. The main pieces needing installation are:

1. Java Development Kit/SDK (JDK)
2. Apache Tomcat (Java Servlet Engine)
3. Apache ActiveMQ (A message broker)
4. EMERSE Web Archive File (WAR file) deployment and configuration

1. Java JDK

The first step in installing EMERSE is to download and install a Java Development Kit on the
server. We recommend version 7 at this time.

Download Site:

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html

Choose the correct install that matches the target computer’s operating system. If the target
workstation is a 32 bit OS then choose the 32 bit download option, otherwise choose the
appropriate 64 bit install of your system.

Linux:

Download tar binary package based on your Linux system into a desired directory. Untar the
package for JDK to be installed using:

tar -xvf jdk-xxversion-linux-xnn.tar.gz

To install the JDK using the RPM binary file, download the file by accepting the license
agreement. Install the package using:

rpm -ivh jdk-xxversion-linux-xnn.rpm

Please note that RPM files need to be installed as root user.

Windows:

After downloading, run the executable. If the target workstation has an existing java installation
that you wish to maintain, unselect the “public JRE” option in the installer as shown below.

2. Apache Tomcat

EMERSE is packaged as a java based WAR file that will be deployed to the Tomcat web server.
We have not tested EMERSE with other application servers, but it should run on other servers
that support the J2EE servlet specification.

Version: Tomcat 7+

Download site: http://tomcat.apache.org/download-70.cgi

Windows:

Download the zip file from binary distributions under the “Core” section. Unzip this file in a
desired directory. This will become the Tomcat installed directory. Edit the startup.bat file found
under bin to point to the directory where the JDK was installed.

set JAVA_HOME=c:\path_to\jdk_install

Linux:

From the binary distributions listed on the page, choose the “Core” tar file. Move the tar file to a
desired directory for installation. Extract the tar file using

tar zxvf apache-tomcat-7.0.nn.tar.gz

Edit the startup script (startup.sh) found at /path/to/tomcat/bin to point to Java installation
directory by adding

export JAVA_HOME=/path/to/jdk_install

You can also modify JVM settings to use more RAM in the startup script using

export JAVA_OPTS="-XX:MaxPermSize=256m -XX:PermSize=128m -Xmx3072m -Xms1024m”

It has also been observed that Solr requires a higher limit on the number of open files to be
higher than what is typically the default. This can be set using the ulimit command as below.

ulimit -v unlimited

The exception seen without the higher limit is below:

Caused by: java.io.IOException: Map failed
 at sun.nio.ch.FileChannelImpl.map(FileChannelImpl.java:849)
 at org.apache.lucene.store.MMapDirectory.map(MMapDirectory.java:283)
 at org.apache.lucene.store.MMapDirectory$MMapIndexInput.<init>(MMapDirectory.java:228)
 at org.apache.lucene.store.MMapDirectory.openInput(MMapDirectory.java:195)
 at
org.apache.lucene.codecs.compressing.CompressingTermVectorsReader.<init>(CompressingTermVectorsReader.java:118)
 at
org.apache.lucene.codecs.compressing.CompressingTermVectorsFormat.vectorsReader(CompressingTermVectorsFormat.ja
va:85)
 at org.apache.lucene.index.SegmentCoreReaders.<init>(SegmentCoreReaders.java:132)
 at org.apache.lucene.index.SegmentReader.<init>(SegmentReader.java:96)
 at org.apache.lucene.index.StandardDirectoryReader$1.doBody(StandardDirectoryReader.java:63)
 at org.apache.lucene.index.SegmentInfos$FindSegmentsFile.run(SegmentInfos.java:843)
 at org.apache.lucene.index.StandardDirectoryReader.open(StandardDirectoryReader.java:53)
 at org.apache.lucene.index.DirectoryReader.open(DirectoryReader.java:66)

Start/Stop:

To start the server use:

/path/to/tomcat/bin/startup.sh

To stop the server use:

/path/to/tomcat/bin/shutdown.sh

3. Apache ActiveMQ

EMERSE search requires ActiveMQ for parallel processing of search results from Lucene
indexes. Whenever EMERSE is running, ActiveMQ needs to be running in the background.

Version: ActiveMQ 5+

Download site: http://activemq.apache.org/download.html

Installation and Configuration:

Download and unzip binary distribution of ActiveMQ. After unpacking, edit the activemq.bat
(windows) or activemq.sh (Linux) file to point to the directory where the JDK was installed.

Windows:

set JAVA_HOME=c:\path_to\jdk_install

Start the ActiveMQ broker by opening a terminal/command prompt and navigating to its “bin”
directory. Type

activemq.bat start

Linux:

export JAVA_HOME=/path/to/jdk_install

To start the ActiveMQ broker :

cd /path/to/activemq_install/bin

./activemq start

Default port is 8161. Verify it is running by pointing a web browser to:

http://hostname:8161/admin

4. EMERSE Web Archive File (WAR file) deployment and configuration

Database Initialization

Provided with the distribution are a set of files, each containing SQL statements that create all
needed database objects and sample data that will allow the EMERSE application to startup
with a default set of database objects, and sample data in the patients, research studies,
synonyms and tables. These files need to be executed in a SQL query tool in the following
order:

1. create.sql
2. auditTables.sql
3. sqlToPutBackInModel.sql
4. synonymsCreate.sql
5. lookupData.sql
6. patientData.sql
7. indexData.sql
8. synonymIndexData.sql
9. synonymsData.sql

Index setup

Copy supplied files to a directory on the application server. The path to the default directory is

/app/indexes

(See the next section if you would like to change this default path)

EMERSE Deployment and Configuration

The next step in getting EMERSE up and running after initial installation of the application
server and configuration of the database with default settings is to deploy the EMERSE WAR
file. To deploy the file, first rename the supplied war file to emerse.war, then copy the war file
to the webapps directory of the Tomcat server. If Tomcat is using default settings, the WAR file
will be exploded into a number of files in a directory called emerse. This directory includes all
the files needed to run the application. We need to make a change to the settings file to reflect
the database that will be used. Inside WEB-INF/classes directory of the exploded war file,
you will find a file called project.properties. This file contains the settings to connect to
the database. Update the following values as appropriate for your Oracle database.

For example:

ds.username=emerse

ds.password=emersepassword
ds.url=jdbc:oracle:thin:@myhost.med.umich.edu:1521:hostname

ds.driver=oracle.jdbc.driver.OracleDriver

ds.maxPoolSize=4

To change path of the indexes directory, update the file
springPostprocessor.properties found in WEB-INF/classes directory.

For example:

luceneSearcher.indexPath=/mydir/indexes

Once the file is saved, the application server will need to be restarted to reload the configuration
to use the latest changes.

Running EMERSE

At this point EMERSE should be up and running. You can verify by pointing a browser to:

http://hostname:port/emerse

When the login screen appears provide the following credentials:

Demo user: emerse Password: demouser

Next Steps

Please see the accompanying guide that provides information on how to integrate your
institution’s data into EMERSE. It provides tips on indexing data, and information on loading
tables that are unique to your organization.

EMERSE Data and System Customization Guide

EMERSE Data

EMERSE stores its internal system data within an Oracle database. If necessary, it is possible
to change the database to an open source one, although we do not recommend it at this time
due to the effort it would take.

For the purposes of getting started, Oracle makes available a free “express edition” that is fully
functional. This free edition of Oracle supports 1 core and up to 10 GB of disk space, which
should be enough to support a few users in a demonstration version, or even for a low-powered
production version.

http://www.oracle.com/technetwork/database/database-technologies/express-edition/overview/index.html

The primary data stored within this database includes a patient demographics table, audit logs,
and user data including default settings for each user. These are described below. The large
data stores for the documents and document indices are not stored within this database.
Instead these are managed by Lucene in its own data store.

Patient Demographics Data

The EMERSE schema includes a patient table with medical record number (MRN), name, date
of birth, and other demographic information which is displayed in the search results. Note that
the demographics in this table reflect the same as those found within the i2b2 Workbench. In
addition to displaying the name, the table is used to validate user-entered MRNs and to
calculate current ages of the patients. It should be noted that currently only MRN, name, and
birth_date are required and used by the system, and thus the other elements are not
required.

PATIENT Table Details

Column name Description Required or Optional
id Primary Key Required
external_id Medical Record Number Required
first_name First Name Required
middle_name Middle Name Optional
last_name Last Name Required
birth_date Birth Date -- used to calculate current age Required
sex_cd Sex Optional
language_cd Language Optional
race_cd Race Optional
marital_status_cd Marital Status Optional
religion_cd Religion Optional
zip_cd ZIP code Optional

Research Studies Data

EMERSE is often used to aid in research studies. There is a provision for users conducting
research to specify their study IRB number at the attestation page after successfully logging in.
This enables EMERSE to link that particular session with the study. Loading your institutional
IRB data into the RESEARCH_STUDY table will enable EMERSE to validate a user’s access
against the research studies. EMERSE checks to ensure that the study number is valid, that
the study’s expiration date is not earlier (older) than the current date, and the current study
status (since only certain study statuses allow access). At the University of Michigan we have
been using a commercial IRB tracking system, and we extract a subset of data from that system
to bring into EMERSE for validation of users to studies. Examples of study statuses at Michigan
include “Approved”, “Terminated”, “Pre Submission”, “Expired”, “Changes required by core
staff”, etc. Note: to use this feature you may have to customize the list of study statuses to
match your local needs.

Figure. Entity relationship diagram of some tables related to capturing login attestations.

RESEARCH_STUDY Table Details

Column name Description Required or

Optional
id Primary Key Required
external_id IRB study number -- used to link specific studies to usage, and is very helpful for tracking

research usage
Required

principal_investigator_name Name of the principal investigator. Required
prin_invest_org_id id of principal investigator. Not currently used by EMERSE. Optional
expiration_date Expiration date of study. Used to determine if a user should be allowed to proceed. If the

expiration date is older than the current date, access should not be granted.
Required

project_status Current project status. This is used by the IRB system to track where a study is in the review
and approval process. Only certain study statuses allow access to EMERSE for research.
The valid statuses are defined in the VALID_RES_STUDY_STATUS table

Required

begin_date The date the study is allowed to begin. This may also be an approval date. Currently
EMERSE does not use this date since being able to start the study is better captured in the
status that is obtained from our electronic IRB tracking system.

Optional

SESSION_ATTESTATION Table Details

Column
name

Description Required or
Optional

id Primary Key Required
type This is the type of usage as defined by the UI of EMERSE, where a user selects their reason for using EMERSE.

For example, research, decedent-only study, other. This is recorded for tracking purposes.
Required

VALID_RES_STUDY_STATUS Table Example

The following statuses are currently loaded into the VALID_RES_STUDY_STATUS table.
These research study valid statuses are loaded up in the build script. These are unique to the
University of Michigan (that is, they were developed locally and are implemented in our separate
electronic IRB tracking system) and other implementations would have to have their own set of
valid statuses if these were to be used to validate and approve usage for research.

STATUS
Exempt Approved - Initial
Approved
Not Regulated
Exempt Approved – Transitional

For non-research attestations, there is a lookup table called OTHER_ATTESTATION_REASON
that lists available options:

USER_KEY DESCRIPTION DELETED_FLAG
FRETXT Free Text Reason 0
RVPREPRES Review Preparatory to Research 0
STDYDESC Study involving only decedents (deceased

patients)
0

The free text reason that users entered is stored in a table called ATTESTATION_OTHER. An
example of what the table would look like with real data is:

SESSION_ATTESTATION_ID FREE_TEXT_REASON OTHER_ATTEST_REASON_KEY
50208 Testing out the system FRETXT
52060 Testing out the system FRETXT
46051 Looking up a patient in clinic FRETXT
71052 infection control monitoring FRETXT
74107 cancer registry operational work FRETXT

Clinical Documents

EMERSE search is enabled by the indexing of clinical text documents by Apache Lucene.
Documents in a clinical environment can come from a myriad of sources like transcription,
Radiology, and Pathology, or from an electronic health record. Normally the structure, data, and
metadata related to these documents from different sources varies considerably. Search results
for each source are displayed in a separate tab in the UI.

Documents to Database mapping

Document Index: Each document source is a row in the document_index table. The EMERSE
application searches and displays the results based on document source. Document sources
normally differ in their format and metadata depending on the source of origin.

DOCUMENT_INDEX Table Details

Column name Description Required or

Optional
lucene_name the name of the document source. This field needs to be unique and search results are displayed on

separate tabs for each source.

Required

user_description is the description for the source of document. This field is used when printing individual documents
obtained from a search, so that the document source is printed on the document.

Required

compound_key_flag is a boolean flag that is set when a unique document identifier is a combination of more than one field in
the document. This is needed if there is no other unique identifier for the documents. 0 = not needed; 1 =
needed
In other words, if the primary key of a document source consists of more than one field, this flag needs to
be set to true.
This flag is used internally to set document viewed flag when a user views a particular document.

Regarding compound keys, EMERSE just uses the RPT_ID field when searching/fetching the documents
from Lucene. The only time this compound flag is used is to track if the document has been viewed by a
particular user. The keys are split up and stored in the document_view table to easily reference back to
the source of documents if need be for auditing purposes.

Lucene indexing requires that each document has a unique identifier. So, when indexing, the fields that
uniquely identify a document need to be concatenated and indexed as RPT_ID. For example, when we
indexed Radiology documents we used a combination of document Id and exam description to uniquely
identify documents. These fields are concatenated using ‘|’ and then indexed as RPT_ID.

Required

default_sort_column is the document field to use to sort the search results for each patient Required
display_name is the name displayed in the UI Required
display_prefix is the prefix used by UI components. This can be anything, but each source must have a unique

display_prefix.
Required

display_order is the order in which sources appear in the result summary tabs

Required

Shown here is a table with sample document_index table data containing with three different
document sources:

lucene_name user_description compound_key_flag default_sort_column display_name display_prefix display_order

DMI Central transcription
document 0 Case Date CareWeb dmi 0

Radiology Radiology Documents 0 Report Date Radiology rad 1
Pathology Pathology Document 0 Last Updated Pathology path 2

EMR Intent

The doc_field_emr_intent lookup table describes the intent of the document fields. This
table does not need to be edited by anyone and is used internally by the system to help map
various sources and types of data to the intended uses of those data by the system. The table
has a name and a description field. The values contained in the name field of this table are
listed below. Note that the first 6 items are required for the Lucene indexer to work, the next two
are optional, and the final one is no longer used.

Column name Description Required or

Optional
MRN patient medical record number, which is a unique patient identifier

Required

RPT_ID Unique document identifier Required
CLINICAL_DATE Date when the clinical event occurred. Often this would be considered the “note date” Required
LAST_UPDATED Date when the document was last updated, since changes are sometimes made to documents Required
RPT_TEXT The actual text of the clinical document. This field is used by Lucene for lower-case indexing (case-insensitive

searching).
Required

RPT_TEXT_NOIC A copy of the document text to be indexed using a case-sensitive Lucene filter (NOIC = NO Ignore Case) Required
TEXT Any generic text field. Note that a document may have multiple of these types of generic text fields (e.g., clinical

service, document type, clinician name, etc). This is useful when additional metadata are associated with the
document and should be displayed.

Optional

DATE Any generic date field, since a document may have more than one kind of date associated with it. Optional
ENCOUNTER_ID This is no longer used. It had been used for a time to search across all patients without limiting it to a set of

medical record numbers. These kind of searches are now done by directly using the Solr API.
No longer
used

The actual doc_field_emr_intent lookup table is as follows:

NAME DESCRIPTION
MRN Patient unique identifier
RPT_ID Report unique identifier
CLINICAL_DATE Relevant clinical date of this document
LAST_UPDATED Last updated date field
RPT_TEXT Report text case ignored
RPT_TEXT_NOIC Report text
TEXT Text field
DATE Date field
ENCOUNTER_ID Associated Encounter Id for this doc

Document Fields

All fields in from a document source that are available for display in EMERSE are enumerated in
the document_fields table. This table consists of a column called EMR_INTENT that is
linked to the name field of the doc_field_emr_intent mapping table. The column
DOC_INDEX_LUC_NAME is linked to the lucene_name field of the document_index table.

For a search to be performed, it is necessary that each document source contains six fields
defined within the EMR_INTENT column that gets linked to the sixe required fields as defined in
the doc_field_emr_intent table. Additional metadata fields belonging to a document
source can be specified using the generic EMR_INTENT options of TEXT or DATE. These
additional metadata fields are used by EMERSE for display in the UI but are not used by
Lucene.

Shown below is an example document_fields table for three different document sources:

LUCENE_NAME DATA

TYPE
DISPLAY
_ORDER

DISPLAY_
NAME

EMR_
INTENT

DOC_INDEX_
LUC_NAME

DISPLAY
_FLAG

SUMMARY_DISPLAY_
FLAG

MRN Text 0 MRN MRN DMI 0 0
RPT_TEXT Text 1 Report Text RPT_TEXT DMI 0 0
RPT_TEXT_NOIC Text 2 Report Text RPT_TEXT_NOIC DMI 0 0
RPT_ID Text 3 Report ID RPT_ID DMI 1 1
LAST_UPDATED Date 4 Last Updated LAST_UPDATED DMI 1 0
CASE_DATE Date 5 Case Date CLINICAL_DATE DMI 1 1
MRN Text 0 MRN MRN PATHOLOGY 0 0
RPT_TEXT Text 1 Report Text RPT_TEXT PATHOLOGY 0 0
RPT_TEXT_NOIC Text 2 Report Text RPT_TEXT_NOIC PATHOLOGY 0 0
RPT_ID Text 3 Report Id RPT_ID PATHOLOGY 1 1
LAST_UPDATED Date 4 Last Updated LAST_UPDATED PATHOLOGY 1 1
DR_NUM Text 5 Doctor Num TEXT PATHOLOGY 1 1
COLLECTION_DATE Date 6 Collection Date CLINICAL_DATE PATHOLOGY 1 0
MRN Text 0 MRN MRN RADIOLOGY 0 0
RPT_TEXT Text 1 Report Text RPT_TEXT RADIOLOGY 0 0
RPT_TEXT_NOIC Text 2 Report Text RPT_TEXT_NOIC RADIOLOGY 0 0
RPT_ID Text 3 Report ID RPT_ID RADIOLOGY 1 1
LAST_UPDATED Date 4 Last Updated LAST_UPDATED RADIOLOGY 1 0
SVC_CD Text 5 Service Code TEXT RADIOLOGY 1 0
DR_NUM Text 6 Doctor Num TEXT RADIOLOGY 1 0
RPT_DATE Date 7 Report Date CLINICAL_DATE RADIOLOGY 1 1

A description of the columns names is as follows:

Column name Description Required or

Optional
LUCENE_NAME name of the document field that was indexed in Lucene. The names of the fields are specified in

schema.xml file for Lucene to index documents and need to match in this table column
Required

DATATYPE type of the document field Required
DISPLAY_ORDER order in which fields need to appear in the search results Required
DISPLAY_NAME name that appears in the UI Required
EMR_INTENT specifies the intent of the field. This refers to the fields defined in the doc_field_emr_intent

table.
Required

DOC_INDEX_LUC_NAME specifies the document type key from document_index table

Required
DISPLAY_FLAG flag that controls if the field is displayed when document is displayed Required
SUMMARY_DISPLAY_FLAG flag that controls if the field is displayed in search results summary page Required

Lucene Shards

A shard is an instance of a Lucene index. A large index can be broken into multiple pieces
(shards) to make searching more efficient. All lucene indexes are listed in lucene_shards
table. Each installation of EMERSE can have its own way of breaking up the indices, but we
have found that it makes the most sense to have each document source in its own index, and
larges indices are divided into multiple shards. In general we have created shards based on
document sources as well as date ranges. For example, each year of Epic EHR documents is
in its own Shard to keep their sizes ‘manageable’. There is no specific or ideal size for a shard,
but it likely depends on the available power and speed of your server hardware, the size of the
documents, etc. Our shards our typically about 200 GB each.

EMERSE uses Lucene based indexes to search, highlight, and display documents. Depending
on the number of documents each document type contains it is possible to split the documents
into multiple Lucene indexes (shards or sub-indexes) for easy maintenance. Typically, splitting
is done based on date ranges. This information is captured in a database table called
lucene_shards

LUCENE_SHARDS Table Details

Column name Description Required or Optional
ID The Lucene name of the index Required
PARENT_DOC_INDEX Specifies the document type key from document_index table Required
START_DATETIME Start date of clinical documents in this shard Required
END_DATETIME End date of clinical documents in this shard Required

A sample LUCENE_SHARDS table is shown below

ID PARENT_DOC_INDEX START_DATETIME END_DATETIME
rpta DMI 01.02.2008 00:00:00 31.12.2011 00:00:00
rptb RADIOLOGY 01.01.2011 00:00:00 31.12.2011 00:00:00
rptc PATHOLOGY 01.01.2011 00:00:00 31.12.2012 00:00:00

Figure. Entity relationship diagram showing how the three tables above are related.

Indexing documents with Apache Solr

EMERSE requires that all text documents be indexed in the Lucene format. Indexing can be
done in several ways. We use Apache Solr which is a standalone full text server built using
Lucene to index documents. Solr provide a lot of functionality on top of the Lucene libraries. In
the case of indexing Solr provides:

1. A REST-based API
2. Remote Java acces via SolrJ

When using the REST API, the JSON/XML/CSV type of data structures are posted via HTTP
calls to the Solr server. We use SolrJ, where binary java objects are transmitted, so mapping to
these data structures is uncecessary.

A simplified code example of indexing with SolrJ can be found here:

http://www.solrtutorial.com/solrj-tutorial.html

Please refer to the installation section of this manual for Solr install instructions. It is assumed
that all documents that need to be indexed are available in a data store with at least the four
pieces of metadata information required for each document: MRN, RPT_ID,
CLINICAL_DATE, and LAST_UPDATED along with clinical document text.

 Figure. High-level overview of indexing using Apache Solr.

Figure. High-level overview of how data are integrated from various source systems into
EMERSE at the University of Michigan. Each institution will likely have its own unique set of
sources and integration issues.

Indexing using Solr DIH (Data Import Handler)

Reference: https://wiki.apache.org/solr/DataImportHandler	

The easiest way to index documents stored in your local document store database is to use the
DataImportHandler (DIH) that ships with Solr. Solr at startup needs a home variable
(solr.home) defined where it would look for the various configuration files. DIH requires the
following two jars to be placed in the lib directory of Solr installation:

1. solr-dataimporthandler-4.x.x.jar
2. solr-dataimporthandler-extras-4.x.x.jar

Database configuration information and the queries needed to retrieve documents are specified
in DIH dataconfig.xml file. A sample configuration with mandatory fields required by
EMERSE is shown below:

<dataConfig>
 <dataSource name="XE" driver="oracle.jdbc.driver.OracleDriver" url="jdbc:oracle:thin:@localhost:1521:XE"
 user="system" password="abc" />
 <document name="rpta">
 <entity name="rptsa" pk="RPT_ID" query="select rpt_id,mrn,cast(rpt_date as date) rpt_date,rpt_text,
 cast(clinic_date as date) clinic_date from emerse.reports_ctsa where rpt_type=1"
 transformer="ClobTransformer,DateFormatTransformer">
 <field column="RPT_ID" name="RPT_ID" />
 <field column="RPT_TEXT" name="RPT_TEXT" clob="true"/>
 <field column="MRN" name="MRN" />
 <field column="RPT_DATE" name="RPT_DATE" dateTimeFormat="yyyy-MM-dd HH:mm:ss.S" locale="en" />
 <field column="CLINIC_DATE" name="CLINIC_DATE" dateTimeFormat="yyyy-MM-dd HH:mm:ss.S" locale="en"/>
 </entity>
 </document>
</dataConfig>

Mapping of the database columns to the Lucene format and how they need to be indexed is
specified in schema.xml. A snippet of schema.xml for the fields specified above in the
dataconfig.xml above is shown here:

<field type="string" name="RPT_ID" indexed="true" stored="true" />
<field type="string" name="MRN" indexed="true" stored="true" />
<field type="date" name="CLINIC_DATE" indexed="true" stored="true" />
<field type="date" name="RPT_DATE" indexed="true" stored="true" />
<field type="text_general_nostopwords" name="RPT_TEXT" indexed="true" stored="true" termVectors="true"
 termPositions="true" termOffsets="true" />
<field name="RPT_TEXT_NOIC" type="text_general_nostopwords_nolowercase" indexed="true" stored="true"
 termVectors="true" termPositions="true" termOffsets="true" />
<field name="_version_" type="long" indexed="true" stored="true"/>

A few things to note:

1. There are multiple ways to create indices depending on which ‘analyzer’ is used to tokenize
the text. Tokenization refers, in part, to the process of how text should be broken up into
individual words, and considers properties such as hyphens between words.

2. The Lucene field RPT_TEXT_NOIC does not exist in the database query output. The
Copyfield command of Solr is utilized to make a copy using RPT_TEXT. The only difference
between these two fields is that text in RPT_TEXT_NOIC is tokenized and indexed ‘as is’ without
applying a lowercase filter <copyField source="RPT_TEXT" dest="RPT_TEXT_NOIC"
/>

3. The field type text_general_nostopwords is an extension of Solr text_general
wherein index and query analyzer does not use any stopwords filter

4. The field type text_general_nostopwords_nolowercase is an extension of
text_general _nostopwords where lowercase filter is skipped in addition to stopwords

Indexing programmatically with SolrJ

Solrj is a Java client that can be used to add/update a Solr index. This may provide better data
indexing speed because multiple threads can be used to load the data.

Reference: http://wiki.apache.org/solr/Solrj#Adding_Data_to_Solr

Solr connects to the document repository using SQL/JDBC. We are using a Unix Cron job to
tell the indexing code to start and run once per night vian HTTP call to the running app.

Interactions with an EHR like Epic

The University of Michigan Health System (UMHS) EHR is based on Epic. EMERSE receives
encounter summaries and notes from Epic via an Epic Bridges outbound HL7 interface. Details
about this interface can be found here:

http://open.epic.com/Content/specs/OutgoingDocumentationInterfaceTechnicalSpecification.pdf

The emitted HL7 messages include the clinical notes in RTF format, which preserves the
formatting and structure of the notes. These files are converted to HTML by ASPOSE Words
API, and stored for nightly indexing into Lucene format.

Reference: http://www.aspose.com/java/word-component.aspx

EMERSE is designed to run stand alone, so there are no real-time Web Service calls to Epic. It
is also possible to receive plain text notes either through HL7 or through Epic Clarity database,
however, the display of the notes will not look as good as an RTF version since the original
document formatting may be essential for understanding/interpreting the document once
displayed within EMERSE. Epic Clarity currently does not preserve the formatting, line breaks,
etc. but could be considered a source of documents if that were to change.

If there is a desire to use Clarity to obtain notes, we suggest looking into the following tables:

HNO_INFO (note metadata)
HNO_ENC_INFO (notes /encounter linkage)
HNO_NOTE_TEXT (actual note text)

These tables don’t seem to be documented in Epic’s Clarity ambulatory care documentation,
even though outpatient notes are stored in the same tables along with the inpatient notes as of
Epic 2012. However, The inpatient Clarity “training companion” does have an overview of these
tables, and they are mentioned in the Clarity data dictionary, so between these two references
you should be able to build a query that collects Epic notes.

Figure. The approach used at the University of Michigan to obtain notes from the Epic EHR and
make them searchable within EMERSE.

Known Bugs and Issues

Because EMERSE relies on other open source software, we have identified bugs that we are
not able to readily fix. These currently include:

[March 2015]
The ‘Advanced Search’ feature sends a standard Lucene query without any interpretation or
modification by EMERSE. We have found that for complex Boolean queries the system does
retrieve the documents correctly, but the separate Highlighter component does not properly
highlight based on the Boolean query. Rather it will highlight any terms it finds in the query
regardless of the Boolean operation.

The screen shot below demonstrates this. The document was retrieved because ‘hypertension’
and ‘diabetes’ were found together in the document. Note that the term ‘cardiac’ does not
appear in the document, but ‘back pain’ was still highlighted.

