

EMERSE

Electronic Medical Record Search Engine

Implementation and Customization
Technical Manual

project-emerse.org

David Hanauer <hanauer@umich.edu>

Last updated June 16, 2017

Intended Audience

The intended audience for this Technical Manual are developers and IT/informatics support
teams with deep technical expertise. The manual covers many details related to installing and
customizing the system for a local implementation. This manual does not cover general usage
of EMERSE and it is not mean to be a help document for users. Such user-focused help can be
found elsewhere. In addition to this document we also offer a separate manual related to our
fully functional virtual machine (VM), where all components have already been installed and
configured. The VM is a valuable companion to this document since IT teams can use the VM to
look “under the hood” and better understand how EMERSE actually works.

License

EMERSE is being offered at not cost under a __________ license.

Warranty? Disclaimers?

Feedback is welcome

This Technical Manual is a work-in-progress. We welcome any feedback to improve it,
including corrections, additions, and other clarifications. If at any point you get stuck or run into
problems, please contact us so we can help. The main point of contact is David Hanauer
<hanauer@umich.edu>.

Partial to do list for this manual:

* Discuss synonyms and how to add/update

* Discuss authenticating users with LDAP or others

* How to add users

* How to delete users

* Sys admin features, if any

* Queries to check on system stats

* Details about Solr indexing

Background

EMERSE is the Electronic Medical Record Search Engine. It was designed to work with the free
text (unstructured) clinical documents in an electronic health record (EHR) system. Most
importantly, EMERSE was made for regular users, not those with IT or informatics expertise.
EMESE has some similarities with natural language processing (NLP) tools, but it is technically
an information retrieval tool and it is not what one might traditionally consider NLP software.

EMERSE provides features to help users get their work done quickly and accurately. For
example, the tool can provide many suggestions related to synonyms and related keywords,
acronym expansions, and even suggestions for both generic and brand drug names.

EMERSE offers intuitive and novel ways to visualize the search results, helping users focus on
the information they need. For example, search results can be viewed as a 'heat map' overview,
showing the density of documents with a search hit, as well as what we call a 'mosaic view'
which shows a color-coded grid with specific terms that appear for each patient in the search
results.

EMERSE was developed at the University of Michigan in 2005 and has been continuously
improved and updated since then. EMERSE has been used to support many real world tasks
including clinical and translational research (both cohort identification and data abstraction),
quality improvement and quality assurance initiatives, as well as hospital operational support
tasks. It has been used very successfully by the billing and coding team for complex case
reviews, improving reimbursement rates by nearly $1 million per year. The software is used
routinely by the Michigan Medicine Compliance Office, Office of Risk Management, and the
Department of Infection Control. EMERSE has also been used in the clinical setting to support
rapid data retrieval to answer clinical questions as well as to reduce the burden of prior
authorizations, required by many insurance companies. EMERSE has also been used to
support hundreds of research projects, leading to many peer-reviewed publications.

EMERSE can integrate documents from multiple sources. At the University of Michigan,
EMERSE contains over 100 million documents, including those from our original, homegrown
EHR system, CareWeb, as well as documents from our pathology system, and even documents
from our replacement vendor EHR, Epic. EMERSE was designed to be vendor-neutral -- as
long as you can get your documents out of the source system, EMERSE should be able to
search through them. We've also created an interface to move cohorts identified through the
i2b2 Workbench directly into EMERSE for further searching of the patients’ free text notes.

EMERSE was created with support from the University of Michigan Comprehensive Cancer
Center, the CTSA-supported Michigan Institute for Clinical and Health Research (MICHR), and
Michigan Medicine through the Health Information Technology and Services (HITS)
Department. We are making EMERSE available at no cost for other sites to use.

Before starting

To get EMERSE up and running there are several things you should know.

While the system was designed to be simple to use for non-technical people, installing the
system requires significant technical expertise, and will likely need some degree of local
customization. We expect those installing EMERSE will have expertise or experience in
databases (SQL), Apache Solr, and Java servlet containers such as Apache Tomcat. A strong
understanding of security and regulatory requirements is also required.

We have a fully operational system on a virtual machine (VM) that includes PubMed abstracts
as an example data source (see http://project-emerse.org for details, including a detailed VM
manual). This is good for understanding how the system works, but is not ideal for operational
use. We can also provide the system packed up as a .war file which can be placed in to the
Tomcat webapps directory as described in these instructions. If you want the original source
code, we can send an export of an Eclipse project. The source build is easiest if you use the
brand of Eclipse that we use (Spring Tool Suite), but it can also be built via Maven/command
line.

It is also important to remember that if your institution will be using EMERSE, it is necessary to
ensure that all security and privacy regulations are followed. EMERSE should be installed by IT
and informatics professionals who are familiar with the requirements for securing protected
health information and maintaining the right infrastructure/IT environment to ensure that the data
remain secure behind a firewall.

Hardware Requirements

Like most systems, EMERSE will always perform better with faster hardware. However, it
should be possible to get a reasonably performing system without major investment. At the
University of Michigan our production system is currently running on an 8-core Intel box with 12
GB RAM. Indices are store on a hard disk-based SAN, currently with 3 TB allocated. Solid state
drive (SSD) storage would be expensive but would definitely improve the performance of the
system. Our informal testing showed that overall performance increased by about 400% when
using SSD storage compared to disk.

With local hosting, we estimate an upfront hardware cost of $10-20k, but that range could be
very different depending on the local cost of hardware at your institution. Some of this will
depend on how many users (especially number of concurrent users) you expect. You could, of
course use less expensive hardware, but please remember that the user experience is vital for
the success of EMERSE, and fast response times are vital to a good user experience.

We recommend that the Oracle database that supports EMERSE be on a separate server from
EMERSE itself, but they could both reside on the same server if needed.

It also possible to run everything on virtual machines but we generally do not recommend that
approach. Depending on the VM configuration and host, performance is generally better when
the server process connected to the disk is not through a virtualized storage layer. This is
because the underlying Solr indexes used by EMERSE should be as low latency/high
throughput as is practical.

High Level Overview of Core Components

There are three inter-related but distinct components needed for a full installation of EMERSE:
(1) Apache Solr, (2) Document sources (e.g., a document repository), and (3) the EMERSE
application itself. It is important to note that components (1) and (2) are necessary for EMERSE
to run, but getting these two components up and running are independent of setting up
EMERSE. We provide guidance on the issues related to these two components. The three core
components are described below in additional detail.

(1) Apache Solr/Lucene

EMERSE leverages the Apache Solr project to enable searching of documents. EMERSE
requires that any documents go through an indexing process using Solr. Indexing
documents involves pushing text and associated metadata to URL’s hosted by Solr. Solr in
turn generates files in its own unique format (inverted index) that enables fast searching and
retrieval. The files are then used by EMERSE, either directly with the Java based Lucene
API, or through the REST based Solr API. Note that the EMERSE application itself does not
provide functionality to build the index files needed by the application; this is all handled by
Solr.

Documents can be pushed to Solr in a number of ways. The Solr project provides a native
Java API, a REST API that can be invoked via ETL tools, curl, or other simple HTTP utilities.
At Michigan, we primarily use the Java API to index documents, but have also successfully
used other ETL tools such as Pentaho Data Integrator (PDI). PDI is currently used to
load/index data on our virtual machine (VM) distribution of EMERSE (see http://project-
emerse.org/virtualmachine.html).

The Solr project umbrella includes REST based web API’s for querying, monitoring and
admin tools, as well as the API’s for indexing and removing/deleting documents when
necessary. The core technology underpinning most of the API’s in the Solr project is Apache
Lucene, a set of Java libraries. EMERSE uses a mix of the Solr web based API and Lucene
libraries.

Additional details about indexing with Solr can be found elsewhere in this manual, see
“Indexing with Solr”

(2) Source Document repository or repositories

EMERSE is capable of incorporating data from one or more sources in your environment,
which likely differs from one organization to another. Existing document stores need to be
identified such that they can be accessed and indexed with Solr/Lucene. We recommend
that documents are extracted from their original sources, transformed if necessary (for
example, conversion from RTF to HTML format), and then stored in a document repository.
This document repository would then be used to send documents to Solr for indexing. Use

of such a repository should also make it easier to handle and track instances when
documents have been changed (e.g., deleted or updated) and is also a more practical
approach for times when re-indexing the entire repository is needed. The EMERSE
application itself does not need access to these document repositories since, at runtime,
EMERSE uses Solr exclusively to search, highlight and present documents and the inverted
index contains a copy of the document for display.

(3) EMERSE

The EMERSE software runs independently of, but is dependent upon, a functional Solr
server with indexes. At startup, EMERSE is pointed to the pre-existing Solr indexes and the
Solr server, and then the magic happens. The document content that EMERSE displays to
users at runtime comes from the Solr indexes, not the document repository. These indexes
need to be accessible to the process (the Java virtual machine) that is running EMERSE but
does not need to be on the same server as EMERSE itself. In the case of EMERSE at the
University of Michigan the Solr indexes are located on a SAN that is attached to the server.
Of course, local storage could also be used.

EMERSE itself does contain an Oracle database separate from the Document Repository.
In addition to the general application data about users, audit logs, etc, this database also
stores information about research studies and demographic data for the patients in the
system. These data come from external sources (an electronic IRB system for the studies,
and the electronic health record for the patient demographics), and are pushed into the
database each night.

Two additional figures showing high-levels overviews of the setup follow.

Figure. High-level conceptual overview of the components and data needed to populate and
run EMERSE at the University of Michigan. Not all elements are needed (such as the feed from
the electronic IRB system).

Figure. High-level overview of how data are integrated from various source systems into
EMERSE at the University of Michigan. Each institution will likely have its own unique set of
sources and integration issues.

Code Dependencies

EMERSE leverages multiple open source components, which are listed below.

Server side dependencies

groupId artifactId license more info

org.springframework spring-core Apache 2

org.springframework spring-context Apache 2

org.springframework spring-beans Apache 2

org.springframework spring-aop Apache 2

org.springframework spring-tx Apache 2

org.springframework spring-webmvc Apache 2

org.springframework spring-aspects Apache 2

org.springframework.security spring-security-core Apache 2

org.springframework.security spring-security-config Apache 2

org.springframework.security spring-security-web Apache 2

org.springframework.security spring-security-ldap Apache 2

org.springframework spring-jms Apache 2

org.aspectj aspectjrt Eclipse 1.0

org.aspectj aspectjweaver Eclipse 1.0

org.springframework spring-orm Apache 2

org.hibernate hibernate-core LGPL 2.1

org.hibernate hibernate-entitymanager LGPL 2.1

org.hibernate hibernate-envers LGPL 2.1

oracle oracle-driver* OTN
http://www.oracle.com/technetwork/licenses/d
istribution-license-152002.html

c3p0 c3p0 LGPL 2.0

junit junit Eclipse 1.0

org.codehaus.jackson jackson-core-asl Apache 2

org.codehaus.jackson jackson-mapper-asl Apache 2

org.springframework.webflow spring-js Apache 2

org.slf4j slf4j-log4j12 MIT

commons-logging commons-logging Apache 2

log4j log4j Apache 2

commons-httpclient commons-httpclient Apache 2

commons-fileupload commons-fileupload Apache 2

commons-io commons-io Apache 2

org.apache.activemq activemq-client Apache 2

org.apache.activemq activemq-broker Apache 2

net.sf.trove4j trove4j BSD

org.springframework.batch spring-batch-core Apache 2

org.springframework.integration spring-integration-core Apache 2

org.springframework.integration spring-integration-jms Apache 2

org.springframework.integration spring-integration-stream Apache 2

org.springframework.integration spring-integration-jmx Apache 2

org.apache.solr solr-core Apache 2

joda-time joda-time Apache 2

Client JavaScript dependencies

name license more info
jquery MIT/GPL
keyboard.js https://github.com/RobertWHurst/KeyboardJS/blob/master/license.txt

date.js MIT http://www.datejs.com/
json2.js PUBLIC http://www.JSON.org/json2.js
amplify.js MIT
knockout-2.1.0 MIT
knockout-
validation MIT

jquery-ui MIT/GPL
jquery-idletimer MIT
jquery-json MIT
jquery.iframe MIT
jquery.fileupload MIT/GPL
jquery.balloon MIT/GPL
jquery.metadata MIT/GPL
jquery.rating MIT/GPL

EMERSE Document Repository and Solr Indexing

Document Repository

While not necessary, we recommend a document repository as a staging area for sending
documents to Solr for indexing. Documents do not need to be in a single repository, since it is
possible to use multiple document repositories if needed. We recommend using a standard SQL
database (Oracle, MySQL, PostgresSQL, etc) for the document repository because of its
support for backup/restore, etc. Also, we have found that it is easier to use such a database to
keep track of document changes that occur after initial indexing (a document might be updated,
for example). This allows us to more quickly identify documents that may need re-indexing. In
theory it might be possible to point the Solr indexing processes directly to an electronic health
record system if the right APIs are in place, but this would likely make it much harder to identify
incremental changes in the data and thus might require much broader scanning of the entire
source repository each time for any potential changes.

It is also easier to manage data if a document repository is set up. When a new document
source is to be added, one only needs to create a new table with the documents and metadata,
and then populate the table with the source data. (Of course, one still will need to update
Solr/Lucene to point to this new table, and to add information about the source into EMERSE,
detailed elsewhere in this document.)

At the University of Michigan we use Oracle for our document repositories (we have more than
one), and the repositories are organized by source systems. These repositories contain the
documents themselves as well as metadata including Medical Record Number, Document Date,
Last Updated, as well as details that vary depending on the source such as Clinical Service,
Clinical Provider Name, etc. These metadata are used in the display for the users within
EMERSE, although Last Updated is also important for knowing if a document needs to be re-
indexed.

Note that this document repository is not a core part of EMERSE and is not something that we
set up or include in the EMERSE software. It does not need to be available when EMERSE is
running, but the repository must be available when Solr/Lucene is indexing. Solr makes a copy
of the indexed documents, so it is Solr that serves up the documents at runtime for EMERSE,
not the document repository or source system.

Documents should ideally be in the form of plain text or HTML. At Michigan, since we also
receive documents in RTF format, we use a commercial software package (Aspose.Words,
http://www.aspose.com/word-component-suite.aspx) to perform this conversion from RTF to
HTML for storage in our repository. Other tools exist for other file formats. For example, if PDF
documents are stored as source documents, one could use a tool like Apache Tika
(https://tika.apache.org) to extract the text to present it to Solr.

To capture clinical notes that reside in Epic, an HL7 based interface that emits HL7 messages
containing the note in RTF format when notes are edited and signed has been configured.
Details about this process are described elsewhere in this document. A Java process then takes

the content of the messages, converts them to HTML using Aspose.Words, and stores it in the
document repository. Available metadata in the HL7 message is also stored in the repository
along with the note, such as Encounter Date, Department, and Edit Date. We recommend that
you try to only include finalized, or ‘signed’ notes in the repository to prevent the need to
continually monitor for document changes and frequent re-processing and re-indexing.
However, such decisions will need to be made locally depending on the local use cases, and
needs/expectations of users. At Michigan we do not use Epic’s Clarity repository for our source
of documents because Clarity does not preserve the original rich text formatting that makes the
documents much easier for users to view within the browser-based EMERSE system.

Getting Documents From Source Systems: Overview

This section provides a general overview regarding the approaches for getting documents from
source systems, which is a pre-requisite for submitting them to Solr for indexing. Additional
details about specific systems (such as Epic) and Solr indexing can be found in others sections
within this document.

Getting documents from source systems will vary considerably at each site and will depend on
multiple factors including the number of different sources, how the documents are stored, how
they are formatted, the type of access or connections available, etc. It is worth pointing out that
documents do not go straight from a source system into the EMERSE application. Rather,
documents (whether from a document repository or directly from a source) generally would get
pushed to Solr where they are indexed. EMERSE then uses Solr to access the document.

For all documents, the minimum elements needed for EMERSE to use them includes:

1. The document text
2. A document date
3. A unique document ID
4. The patient Medical Record Number (MRN) associated with the document

Additional metadata, such as a document type (e.g., “progress note”, “surgical note”) and
clinical service (e.g., “general pediatrics”, “rheumatology”), can also be included. These are
helpful for users and can be displayed when the documents are listed, and can also be used to
sort documents to make them easier to find, and even for filtering results using metadata.

A Last Updated date for a document is not needed by EMERSE itself but is very useful to have
for setting up the indexing process by Solr so that Solr only updates its index with documents
that have been newly added or changed since the last indexing process. We currently handle
this incremental updating process through a small amount of custom code that is outside of
EMERSE itself. Similar, localized code will be needed at different institutions depending on the
source systems and the pathways for moving documents from source systems (or document
repositories) to Solr.

Source systems do not have to be live for EMERSE to operate. Documents have to be
presented to and indexed by Solr, but Solr/Lucene maintains a local copy of each document so
that at runtime EMERSE will use its local copy of the document for display. EMERSE does not
need to access the source systems when conducting its searches or displaying the documents
to users.

Getting Documents From Source Systems: Epic

Many academic medical centers use the Epic EHR. There are multiple ways in which to get
documents out of Epic for indexing within EMERSE, each with its own advantages and
disadvantages. Several of these options are described below. Regardless of how the
documents are extracted, we recommend storing documents extracted from the EHR in a
document repository, and it would be from this interim repository that documents would be
moved to Solr for indexing. Such a repository is not needed at run time for EMERSE, since
EMERSE stores it’s own local copy of the documents (thus there are no real-time calls to Epic
when EMERSE is running). Nevertheless, having a document repository will be important if, for
example, it becomes necessary to rebuild the indexes, or possibly for comparing existing notes
within EMERSE to any new notes that have been generated by the EHR.

Note that regardless of what approach is used for extracting notes, it may be worth
concatenating other data to the note to make a larger, more comprehensive, and self-contained
note detailing additional aspects of the patient encounter. For example, if a clinical note from an
encounters is extracted, it is possible through other queries to extract a medication list at the
time of the encounter, append it to the note, and then store this larger, concatenated merged
document in a document repository.

1. HL7 Interface

The current way in which EMERSE receives encounter summaries and notes from Epic is via
an Epic Bridges outbound HL7 interface. Details about this interface can be found here:

http://open.epic.com/Content/specs/OutgoingDocumentationInterfaceTechnicalSpecification.pdf

There may be a fee required by Epic to turn on this interface. At Michigan this interface was
turned on to send documents to an external health information exchange (HIE). The emitted
HL7 messages include the clinical notes in RTF format, which preserves the formatting and
structure of the notes. We have also found these documents to be ideal because, in addition to
the actual clinical note, the documents contain other important data relevant to the encounter
including the problem list, medication list, billing codes, and other encounter data. This makes
searching more comprehensive for users. This is done because multiple “print groups” are
included in the outgoing document. These RTF files obtained via this interface are converted to
HTML by the commercial software Aspose.Words API, and stored in our document repository
for nightly indexing by Solr.

Reference: http://www.aspose.com/java/word-component.aspx

One disadvantage of this approach is that it is not useful for loading/extracting historic
documents. That is because this outbound document HL7 interface is triggered to send the

document based on pre-specified actions (signing a note, for example) and cannot be called on
an ad hoc basis.

Figure. The approach used at the University of Michigan to obtain notes from the Epic EHR and
make them searchable within EMERSE.

2. Epic Clarity

It is also possible to receive plain text notes either through HL7 or through the Epic Clarity
database; however, the display of the notes will not look as good as an RTF version since the
original document formatting may be essential for understanding/interpreting the document once
displayed within EMERSE. Epic Clarity currently does not preserve the formatting, line breaks,
etc. but could be considered a source of documents in the future if that were ever to change.

If there is a desire to use Clarity to obtain notes, we suggest looking into the following tables:

HNO_INFO (note metadata)
HNO_ENC_INFO (notes /encounter linkage)
HNO_NOTE_TEXT (actual note text)

These tables don’t seem to be documented in Epic’s Clarity ambulatory care documentation,
even though outpatient notes are stored in the same tables along with the inpatient notes as of
Epic 2012. However, The inpatient Clarity “training companion” does have an overview of these
tables, and they are mentioned in the Clarity data dictionary, so between these two references
you should be able to build a query that collects Epic notes.

Note that Clarity might still be useful in order to keep track of what documents have been
changed (for example, a note might be deleted or addended weeks after it has been stored and
indexed in EMERSE). As far as we are aware, there are no simple ways to call Epic to get a list
of what notes have changed within a given time period. Thus, it should be possible to use the
Clarity audit tables to detect what notes have changed and then utilize a web service to pull the
contents of the new note (see Epic Web Services, below). A caveat to this approach, however,
is that there is about 1-day delay from the time these changes might have occurred and the time
the information gets into Clarity.

3. Epic Web Services

It is possible to build a web service to extract documents that preserves the original formatting
of the notes. At the University of Michigan we have built a custom web service that extracts
formatted notes directly from Chronicles (not Clarity). These notes still have their native
formatting which is in RTF, but they are converted to HTML and embedded in a SOAP message
during the web service call. However, the note received does not include other useful
components such as the problem list and medication list (as described in option 1), although it
should be possible to construct a web services that extracts additional “print groups” that could
contain other data including the medications and problem list. This approach will require
individuals to have experience with writing custom web services and Epic Cache code. Those
interested in exploring this option can contact us at the University of Michigan and we can share
the Cache code and the web service definition. Note that these web services are not used for
EMERSE but are being used elsewhere in our health system. There are likely performance
issues with respect to using Web Services for large-scale document retrieval.

Indexing documents with Apache Solr

EMERSE requires that all text documents be indexed in the Lucene format. Indexing can be
done in several ways. We use Apache Solr which is a standalone full text server built using
Lucene to index documents. Solr provides substantial functionality on top of the Lucene
libraries.

Please refer to the installation section of this manual for Solr install instructions (“EMERSE
Deployment Guide”). It is assumed that all documents that need to be indexed are available in a
data store/document repository with at least the four pieces of metadata required for each
document: MRN, RPT_ID, CLINICAL_DATE, and RPT_TEXT (the clinical document text).
While not absolutely required, it is highly recommended that a LAST_UPDATED date is also
stored so that Solr can perform incremental indexing, since complete re-indexing for many
documents is a lengthy process.

There are multiple ways in which documents from source systems can make their way to Solr
for indexing, with the primary distinction being either pushed to Solr or pulled by Solr. Both
approaches are reasonable depending on local circumstances. Additionally, almost any
language can be used to make this happen (Java, Perl, Python, etc).

Three high level approaches are briefly described here, with details in additional sections that
follow:

(1) Custom code with SolrJ

We have found this to be the ideal approach because of it’s speed, multi-threaded
capabilities, and flexibility.

(2) Solr Data Import Handler (DIH)

The Solr DIH ships with Solr and should be easy to use. It may be a good approach for
getting started and learning Solr. However, while the DIH is useful to understand how
the retrieval/indexing process works, the DIH is slow compared to other methods and is
not multi-threaded so we do not recommend it for larger-scale implementations.

(3) Non-developer tools

Documents can also be presented to Solr using non-developer tools such as Pentaho
Data Integration tool, which is free and open source, and is used on our demonstration
EMERSE virtual machine for loading/indexing data.

http://www.pentaho.com/product/data-integration

Pentaho can read a database and then do a POST to Solr via a REST call. When using
the Solr REST API, the JSON/XML/CSV type of data structures are posted via HTTP
calls to the Solr server. For our production EMERSE system we use SolrJ, where binary
java objects are transmitted, so mapping to these data structures is unnecessary.

Indexing programmatically with SolrJ

SolrJ is a Java client that can be used to add/update a Solr index. This may provide better data
indexing speed because multiple threads can be used to load the data. We have found this
implementation to be fast and ideal.

Reference: http://wiki.apache.org/solr/Solrj#Adding_Data_to_Solr	

A simplified code example of indexing with SolrJ can be found here:

http://www.solrtutorial.com/solrj-tutorial.html

At the University of Michigan we have developed a small amount of custom code to sit between
our various source systems and Solr. This custom code is not part of the standard EMERSE
release since the specific needs will vary for each institution. The code pulls data from our
document repositories via SQL/JDBC and presents it to Solr for indexing via SolrJ. This
approach also allows us to do additional transformations as needed such as converting
documents in RTF format to HTML format which is ideal for displaying in EMERSE. Another
type of possible transformation is concatenating pieces of a document from multiple database
rows. This can be done through SQL or through custom code, but it needs to be done before
presenting the document to Solr for indexing.

We are using a Unix Cron job to make a REST API call to custom indexing code to start once
per night. Because we utilize a last-updated date for each document, the code only indexes new
documents that have been added.

 Figure. High-level overview of indexing using Apache SolrJ.

Indexing using Solr DIH (Data Import Handler)

Probably the easiest way to get started with document indexing is to use the Solr Data Import
Handler (DIH). This comes packaged with Solr and is easy to get up and running. While the DIH
is useful to understand how the indexing process works, the DIH is slow compared to other
methods and not multi-threaded so we do not recommend it for larger-scale implementations.
The DIH can be configured to access a source system or database, with details about how to
retrieve and potentially ‘transform’ the document constructed in SQL. For example, some
documents may be in a database with a single document split across multiple rows. The
document can be re-assembled into a single text field using SQL and then Solr can process it.
Note that Solr expects a document to be ‘pre-assembled’ and does not itself concatenate fields
to reconstruct a document from pieces, which is why this should be done in the SQL that
retrieves the document. With the DIH you can define the query and the target source in XML, so
it will pull documents from that source and present them to Solr for indexing. Solr determines if a
document should be added versus updated/replaced based on a unique document key. If you
send Solr a document with a previously used key, Solr will replace the older version of the
document with the newer version. Thus, when using the DIH in an incremental update scenario,
the system would need to be setup to only pull documents that have been updated, which can
be done with the SQL ‘select’ statement and a Last Updated timestamp.

Reference: https://wiki.apache.org/solr/DataImportHandler

Solr at startup needs a home variable (solr.home) defined where it would look for the various
configuration files. DIH requires the following two jars found in the dist directory of Solr
installation:

1. solr-dataimporthandler-6.x.x.jar
2. solr-dataimporthandler-extras-6.x.x.jar

Database configuration information and the queries needed to retrieve documents are specified
in DIH dataconfig.xml file. A sample configuration with mandatory fields required by
EMERSE is shown below:

<dataConfig>
 <dataSource name="XE" driver="oracle.jdbc.driver.OracleDriver" url="jdbc:oracle:thin:@localhost:1521:XE"
 user="system" password="abc" />
 <document name="rpta">
 <entity name="rptsa" pk="RPT_ID" query="select rpt_id,mrn,cast(rpt_date as date) rpt_date,rpt_text,
 cast(clinic_date as date) clinic_date from emerse.reports_ctsa where rpt_type=1"
 transformer="ClobTransformer,DateFormatTransformer">
 <field column="RPT_ID" name="RPT_ID" />
 <field column="RPT_TEXT" name="RPT_TEXT" clob="true"/>
 <field column="MRN" name="MRN" />
 <field column="RPT_DATE" name="RPT_DATE" dateTimeFormat="yyyy-MM-dd HH:mm:ss.S" locale="en" />
 <field column="CLINIC_DATE" name="CLINIC_DATE" dateTimeFormat="yyyy-MM-dd HH:mm:ss.S" locale="en"/>
 </entity>
 </document>
</dataConfig>

Additional Solr indexing details

Mapping of the database columns to the Lucene format and how they need to be indexed is
specified in schema.xml. A snippet of schema.xml for the fields specified above in the
dataconfig.xml above is shown here:

<field type="string" name="RPT_ID" indexed="true" stored="true" />
<field type="string" name="MRN" indexed="true" stored="true" />
<field type="date" name="CLINIC_DATE" indexed="true" stored="true" />
<field type="date" name="RPT_DATE" indexed="true" stored="true" />
<field type="text_general_htmlstrip" name="RPT_TEXT" indexed="true" stored="true" termVectors="true"
 termPositions="true" termOffsets="true" />
<field name="RPT_TEXT_NOIC" type="text_general_htmlstrip_nolowercase" indexed="true" stored="true"
 termVectors="true" termPositions="true" termOffsets="true" />
<field name="_version_" type="long" indexed="true" stored="true"/>

<field name="SOURCE" type="string" docValues="true" indexed="true" stored="true"/>

A few things to note:

1. There are multiple ways to create indexes depending on which ‘analyzer’ is used to tokenize
the text. Tokenization refers, in part, to the process of how text should be broken up into
individual words, and considers properties such as hyphens between words.

2. The Lucene field RPT_TEXT_NOIC does not exist in the database query output. The
Copyfield command of Solr is utilized to make a copy using RPT_TEXT. The only difference
between these two fields is that text in RPT_TEXT_NOIC is tokenized and indexed ‘as is’ without
applying a lowercase filter <copyField source="RPT_TEXT" dest="RPT_TEXT_NOIC" />

3. The field type text_general_htmlstrip is an extension of Solr text_general which
uses a HTMLStripCharFilterFactory to get rid of any html tags from the text.

4. The field type text_general_htmlstrip_nolowercase is an extension of
text_htmlstrip_nostopwords where lowercase filterSince we no longer use shards all
documents from various sources end up in the same Lucene index. In the unified schema we
define a field called SOURCE that points to the original source of documents.

Updating the Solr indexes

We generally do not recommend rebuilding indexes from scratch unless absolutely necessary.
For performance reasons we suggest only running incremental updates on the index. We have
found that building a new index from many (~100 million) documents can take several weeks.
However, nightly incremental updates of new or changed documents (~40,000) generally takes
less than 30 minutes. There are a number of ways to detect changed documents in source
systems, but the way we do this for EMERSE at Michigan is through the use of audit date fields
in the source systems. Because the sources contain a field indicating when it was last updated,
this allows nightly batch jobs to only select documents that have changed or been added since
the last time it has been run. Generally, the sources also contain a column indicating that a
document has been logically deleted. This allows us to remove deleted documents from the
associated Lucene/Solr indices.

Note: With incremental indexing, it is necessary to either restart the EMERSE application or
reload the indexes for EMERSE (available through the administrator pane) to see the newly
added/updated/deleted documents. Here at Michigan, we have set up a REST API call that
reloads the indexes every morning via a cron job entry.

Documents sometime also need to be deleted or updated. When a document is deleted through
Solr it is actually just flagged as deleted and made unavailable but is not actually deleted from
the index. Additionally, there is no true ‘update’ command; however, if an updated document is
passed to Solr with the same primary key for a document that already exists, then the prior
document will be flagged as deleted and the new document will replace it.

Index Optimization

Over time we have found that many document changes occur as they get updated or deleted (a
deletion might be required if, for example, a document was found to be created under the wrong
patient). It is possible clear out these deleted/inactivated documents and potentially improve the
performance of Solr by Optimizing the documents. This can be invoked manually using the
Optimize button in the Solr Administration User Interface. Optimizing also reduces the index
segment sizes which can also improve system performance. During the optimization process
the original index is left in place while the new, optimized index is being created. This means
that you will need empty storage about 2-3 times the original index’s size for optimization to
proceed. Additionally, we have found that it can take about 10+ hours to conduct an
optimization and it also uses substantial computational resources, meaning that system
performance might suffer for users. Thus, it might be best to run this on weekends during times
of low use. At Michigan we optimize infrequently and will copy the indexes to a different server
with more space and then copy the indexes back after optimization is complete. We also need
to ensure that no new documents are added to the original index during this time.

EMERSE Deployment Guide

Deployment Overview

The high level items involved in deploying EMERSE include preparing the application server,
initializing the Oracle database, and configuring the Solr/Lucene indices. These instructions will
guide you through each of these topics. The diagram below illustrates the high-level architecture
of EMERSE. Additional information related to customizing the Solr/Lucene indices to adapt
EMERSE to your specific environment can be found later in this document.

Figure. High-level architecture diagram.

Pre-Requisites

This guide assumes a few pre-requisite infrastructure items are already in place:

1. An Oracle server should be installed on a server and an account/schema created that
allows full access to create common database objects, such as sequences, tables,
indices etc. EMERSE doesn’t place great demand on the Oracle database, so a
relatively small server can be used with 10-50 GB of storage allocated for user
tablespaces.	Currently at the University of Michigan we are using only 3 GB of space for
production EMERSE with 600+ users and 2 years of data.

2. A Linux/Unix based server that will be used to install the application server and host the
indexing services. This server should be connected to the highest speed storage
available. Capacity is dependent on number of documents to be indexed. At Michigan
Medicine 1.5TB is in use to host approximately 100 million documents on the production
server. An additional 3 TB is available for index optimization. If your documents are
heavily formatted (such as RTF instead of TXT), storage requirements will be higher.

Application Server Installation

This section covers the process of installation and configuring of the application server where
the EMERSE application will be deployed. An instance of Apache Active MQ, an EMERSE
dependency, will also be installed. The main pieces needing installation are:

1. Java Development Kit/SDK (JDK)
2. Apache Tomcat (Java Servlet Engine)
3. Apache ActiveMQ (A message broker)
4. Solr 6 web application
5. EMERSE Web Archive File (WAR file) deployment and configuration

Specifics for installing each of these components follows.

Installation Instructions: Java JDK

The first step in installing EMERSE is to download and install a Java Development Kit on the
server. We recommend version 8 at this time.

Download Site:

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Choose the correct install that matches the target server’s operating system. If the target server
is a 32 bit OS then choose the 32 bit download option, otherwise choose the appropriate 64 bit
install of your system.

Linux:

Download tar binary package based on your Linux system into a desired directory. Untar the
package for JDK to be installed using:

tar -xvf jdk-xxversion-linux-xnn.tar.gz

To install the JDK using the RPM binary file, download the file by accepting the license
agreement. Install the package using:

rpm -ivh jdk-xxversion-linux-xnn.rpm

Please note that RPM files need to be installed as root user.

Windows:

After downloading, run the executable. If the target workstation has an existing Java installation
that you wish to maintain, unselect the “public JRE” option in the installer as shown below.

Installation Instructions: Apache Tomcat

EMERSE is packaged as a java based WAR file that will be deployed to the Tomcat web server.
We have not tested EMERSE with other application servers, but it should run on other servers
that support the J2EE servlet specification.

Version: Tomcat 8+

Download site: https://tomcat.apache.org/download-80.cgi#8.5.9	

Windows:

Download the zip file from binary distributions under the “Core” section. Unzip this file in a
desired directory. This will become the Tomcat installed directory. Edit the startup.bat file
found under bin to point to the directory where the JDK was installed.

set JAVA_HOME=c:\path_to\jdk_install

Linux:

From the binary distributions listed on the page, choose the “Core” tar file. Move the tar file to a
desired directory for installation. Extract the tar file using

tar zxvf apache-tomcat-8.0.nn.tar.gz

Edit the startup script (startup.sh) found at /path/to/tomcat/bin to point to Java
installation directory by adding

export JAVA_HOME=/path/to/jdk_install

You can also modify JVM settings to use more RAM in the startup script using

export JAVA_OPTS="-Xmx2048m -Xms1024m”

It has also been observed that EMERSE requires a higher limit on the number of open files than
what is typically the default on some Linux systems. This can be set using the ulimit
command as below prior to starting Tomcat, or added directly to the startup script startup.sh.

ulimit -v unlimited

The exception seen without the higher limit allowance is below:

Caused by: java.io.IOException: Map failed
 at sun.nio.ch.FileChannelImpl.map(FileChannelImpl.java:849)
 at org.apache.lucene.store.MMapDirectory.map(MMapDirectory.java:283)
 at org.apache.lucene.store.MMapDirectory$MMapIndexInput.<init>(MMapDirectory.java:228)
 at org.apache.lucene.store.MMapDirectory.openInput(MMapDirectory.java:195)
 at
org.apache.lucene.codecs.compressing.CompressingTermVectorsReader.<init>(CompressingTermVectorsReader.java:118)
 at
org.apache.lucene.codecs.compressing.CompressingTermVectorsFormat.vectorsReader(CompressingTermVectorsFormat.ja
va:85)
 at org.apache.lucene.index.SegmentCoreReaders.<init>(SegmentCoreReaders.java:132)
 at org.apache.lucene.index.SegmentReader.<init>(SegmentReader.java:96)
 at org.apache.lucene.index.StandardDirectoryReader$1.doBody(StandardDirectoryReader.java:63)
 at org.apache.lucene.index.SegmentInfos$FindSegmentsFile.run(SegmentInfos.java:843)
 at org.apache.lucene.index.StandardDirectoryReader.open(StandardDirectoryReader.java:53)
 at org.apache.lucene.index.DirectoryReader.open(DirectoryReader.java:66)

Start/Stop:

To start the server use:

/path/to/tomcat/bin/startup.sh

To stop the server use:

/path/to/tomcat/bin/shutdown.sh

Installation Instructions: Apache ActiveMQ

EMERSE search requires ActiveMQ for parallel processing of search results from Solr indexes.
Whenever EMERSE is running, ActiveMQ needs to be running in the background.

Version: ActiveMQ 5+

Download site: http://activemq.apache.org/download.html

Installation and Configuration:

Download and unzip binary distribution of ActiveMQ. After unpacking, edit the activemq.bat
(Windows) or activemq.sh (Linux) file to point to the directory where the JDK was installed.

Windows:

set JAVA_HOME=c:\path_to\jdk_install

Start the ActiveMQ broker by opening a terminal/command prompt and navigating to its “bin”
directory. Type

activemq.bat start

Linux:

export JAVA_HOME=/path/to/jdk_install

To start the ActiveMQ broker :

cd /path/to/activemq_install/bin

./activemq start

Default port is 8161. Verify it is running by pointing a web browser to:

http://hostname:8161/admin

Installation Instructions: Apache Solr 6

The newest version of EMERSE requires Solr 6 web application to be running so that it can hit
the Solr API in real time. This is needed for the ‘All Patient Search’ feature to run.

Version: Solr 6+

Download site: http://lucene.apache.org/solr/

Installation and Configuration:

Windows: Download and unzip the zip file to a directory of choice.

To start Solr 6 navigate to the directory where it was installed and type:

bin\solr.cmd start

Linux: Download the .tgz file and extract it to a directory of choice.

tar zxf solr-6.x.x.tgz

To start Solr 6:

cd /path/to/solr_install/

bin/solr start

Default port is 8983. Verify it is running by pointing a web browser to:

http://hostname:8983/solr

More information can be obtained at

https://cwiki.apache.org/confluence/display/solr/Installing+Solr

Installation Instructions: EMERSE Web Archive File (WAR file) deployment/configuration

Database Initialization (Oracle)

Provided with the distribution are a set of files, each containing SQL statements that create all
needed database objects and sample data that will allow the EMERSE application to startup
with a default set of database objects, and sample data in the patients, research studies,
synonyms and tables. This scripts should be run as the user and schema setup for the
EMERSE application (this will be set by each implementing site), and not a system or sysdba
user. These files need to be executed in a SQL query tool in the following order:

1. create.sql
2. auditTables.sql
3. sqlToPutBackInModel.sql
4. synonymsCreate.sql
5. lookupData.sql
6. patientData.sql
7. indexData.sql
8. synonyms_index_subset.sql
9. synonyms_subset_50k.sql

Index setup

Copy supplied files to a directory on the application server. The path to the default directory is

/app/indexes

(See the next section if you would like to change this default path)

EMERSE Deployment and Configuration

The next step in getting EMERSE up and running after initial installation of the application
server and configuration of the database with default settings is to deploy the EMERSE WAR
file. To deploy the file, first rename the supplied war file to emerse.war, then copy the war file
to the webapps directory of the Tomcat server. If Tomcat is using default settings, the WAR file
will be exploded into a number of files in a directory called emerse. This directory includes all
the files needed to run the application. You will need to make a change to the settings file to
reflect the database that will be used. Inside WEB-INF/classes directory of the exploded war
file, you will find a file called project.properties. This file contains the settings to connect
to the database. Update the following values as appropriate for your Oracle database.

For example:

ds.username=emerse

ds.password=emersepassword

ds.url=jdbc:oracle:thin:@myhost.med.umich.edu:1521:hostname
ds.driver=oracle.jdbc.driver.OracleDriver

ds.maxPoolSize=10

To change path of the indexes directory, update the file
springPostprocessor.properties found in WEB-INF/classes directory.

For example:

luceneSearcher.indexPath=/mydir/indexes

Once the file is saved, the application server will need to be restarted to reload the configuration
to use the latest changes.

Running EMERSE

At this point EMERSE should be up and running. You can verify by pointing a browser to:

http://hostname:port/emerse

When the login screen appears provide the following credentials:

Demo user: emerse Password: demouser

Next Steps

Please see the other sections in this technical manual that provides information on how to
integrate your institution’s data into EMERSE. This manual provides tips on indexing data, and
information on loading tables that are unique to your organization.

EMERSE Data Dictionary and System Customization Guide

Background

EMERSE stores its internal system data within an Oracle database. If necessary, it would be
possible to change the database to an open source one, although we do not recommend it at
this time due to the effort it would take, and this approach is currently untested and unsupported
by the EMERSE team. Further, we have worked hard to optimize the way Oracle performs for
the specific needs of EMERSE to ensure optimal performance for users.

For the purposes of getting started, Oracle makes available a free “Express Edition” that is fully
functional. This free edition of Oracle supports 1 core and up to 10 GB of disk space, which
should be enough to support a few users in a demonstration version, or even for a low-powered
production version.

http://www.oracle.com/technetwork/database/database-technologies/express-edition/overview/index.html

The primary data stored within this Oracle database includes a patient demographics table,
audit logs, and user data including default settings for each user. These are described below.

Note: The large data stores for the documents and document indices are not stored within this
database. Instead these are managed by Solr in its own data store and can be on a separate
server from the Oracle database.

Patient Demographics

Table: PATIENT

Population: From external source (such as EHR)

Population Frequency: Can be variable, but once per day is reasonable

The EMERSE schema includes a patient table with medical record number (MRN), name, date
of birth, and other demographic information which is displayed in the search results. Note that
the demographics in this table reflect the same as those found within the i2b2 Workbench. Data
in this table are used to display the patient name, as well as to validate user-entered MRNs and
to calculate current ages of the patients.

At the University of Michigan, this table is updated once per day (overnight) which coincides
with the timing of indexing all new/changed notes (also once per day). The Solr indexing
process does not require that this table be up to date, but the EMERSE system will need the
MRNs to match between the PATIENT table and the Solr indexes for everything to work
properly when users are on EMERSE.

Note: Currently only MRN, name, and birth_date are required and used by the system, and
thus the other elements are not required. However, near term plans exist to summarize other
elements (such as race, gender, etc) to provide more feedback to users about their cohorts.

Column name Description Required or Optional
id Primary Key Required
external_id Medical Record Number Required
first_name First Name Required
middle_name Middle Name Optional
last_name Last Name Required
birth_date Birth Date -- used to calculate current age Required
sex_cd Sex Optional
language_cd Language Optional
race_cd Race Optional
marital_status_cd Marital Status Optional
religion_cd Religion Optional
zip_cd ZIP code Optional
create_date Date the row was created. Used to track if the batch job that populates this table ran. Optional
update_date Date the row was updated. Used to track if the batch job that populates this table ran. Optional

Research Studies and Attestations

Immediately after each login, every user is required to ‘attest’ to their use of EMERSE for that
session by specifying their reason for using the system. This is called the ‘Attestation’ page, and
the results are stored in the audit logs. EMERSE provides three options (configurable by a
system administrator) for this attestation: (1) a free text box, (2) ‘Quick Buttons’ for choosing
pre-selected options that are commonl used (for example, “Quality Improvement”, “Patient
Care”, “Infection Control”, etc), and (3) a table of research studies to which a user is assigned.

EMERSE is often used to aid in research studies. While not required, there is a provision for
users conducting research to specify their study IRB number at the attestation page after
successfully logging in. This enables EMERSE to link that particular session with the study.
Loading your institutional IRB data into the RESEARCH_STUDY table will enable EMERSE to
validate a user’s access against the research studies. EMERSE checks to ensure that the
study number is valid, that the study’s expiration date is not earlier (older) than the current date,
and the current study status (since only certain study statuses allow access). Examples of study
statuses at Michigan Medicine include “Approved”, “Terminated”, “Pre Submission”, “Expired”,
“Changes required by core staff”, etc. EMERSE also checks that the user is a member of the
study team. Note: to leverage this user/study validation feature you may have to customize the
list of study statuses to match your local needs (defined in the VALID_RES_STUDY_STATUS
table, described below).

At the University of Michigan we have been using a commercial IRB tracking system (Click
Commerce eResearch). A subset of the data from that IRB system are moved to a data
warehouse every night, and we extract a subset of data from that warehouse to bring into
EMERSE for validation of users to studies. This is done with custom code that is not a part of
EMERSE since it will likely vary at each institution. The code is required to populate the
research study tables in EMERSE, shown below. We have generally found that the amount of
data in the research system is small enough to completely refresh the EMERSE tables nightly
rather than incrementally updating the data.

Also note that with the approach taken at Michigan with nightly updates, there can be a delay in
the time between when a study is approved and when a user would be granted access to
EMERSE for that study. There is also a small chance that a user could still be permitted to be
approved for use on a study even if the study was revoked (again because of the delay
introduced by nightly refreshes). This would only happen in cases where a study was terminated
or a user was removed from the study before the end date of the study; either way the audit logs
would still capture this access.

Ideally there should be no need to change the code within EMERSE to validate if a user should
be able to access EMERSE for a research study. Depending on the logic required, this could be
determined outside of EMERSE with some custom code and then the result could be used to
populate the database with a study status that is considered valid. If, for some reason, it is
necessary to modify the EMERSE source code to change way the validation logic is

determined, please contact us if assistance is needed.

Figure. Entity relationship diagram of some tables related to capturing attestion data which
occurs immediately after a user logs in.

Table: RESEARCH_STUDY

Population: Populated from external source such as an electronic IRB system

Population Frequency: Can be variable, but once per day is reasonable

This table contains information about studies, and should ideally be populated from an external
electronic IRB system. At Michigan this is done nightly, with a complete refresh every night
since the amount of data is small enough that incremental updates are not needed.

Column name Description Required

or
Optional

id Primary Key Required
external_id IRB study number -- used to link specific studies to usage, and is very helpful for tracking

research usage
Required

study_name Name of the study Required
principal_investigator_name Name of the principal investigator Required
prin_invest_org_id id of principal investigator. Not currently used by EMERSE. Optional
expiration_date Expiration date of study. Used to determine if a user should be allowed to proceed. If the

expiration date is older than the current date, access should not be granted.
Required

project_status Current project status. This is used by the IRB system to track where a study is in the review
and approval process. Only certain study statuses allow access to EMERSE for research. The
valid statuses are defined in the VALID_RES_STUDY_STATUS table

Required

last_updated A last updated date that comes from the source system. Not currently used within EMERSE. Optional
begin_date The date the study is allowed to begin. This may also be an approval date. Currently EMERSE

does not use this date since being able to start the study is better captured in the status that is
obtained from our electronic IRB tracking system. In other words, once a study is approved a
user can start their research, until the study reaches its expiration date or the status is change
from approved to something else.

Optional

Table: RESEARCH_STUDY_MEMBER

Population: Populated from external source such as an electronic IRB system

Population Frequency: Can be variable, but once per day is reasonable

This table contains information about study team members, and is related to the
RESEARCH_STUDY table, described above. Each study can have one or many study team
members. This table should be populated in the same manner that the RESEARCH_STUDY table
is populated. At Michigan, the data in this table are refreshed nightly, with a full refresh rather
than incremental updates.

Column name Description Required or

Optional
RESEARCH_STUDY_ID Foreign key reference to row id in RESEARCH_STUDY table Required

USER_ID Foreign key reference to row in LOGIN_ACCOUNT table Required
ROLE_NAME A string describing a person’s role on the study team. EG. “PI”, “Staff”, “Study Coordinator” Optional
FIRST_NAME First name of the username who is on the study. It is currently populated from the source IRB system,

but it is not used at all by EMERSE.
Optional

LAST_NAME Last name of the username who is on the study. It is currently populated from the source IRB system,
but it is not used at all by EMERSE.

Optional

BEGIN_DATE This is not currently used by EMERSE. Optional
LAST_UPDATED Date row was last updated Optional
DELETED Flag to indicate if the record has been logically deleted Required

Table: SESSION_ATTESTATION

Population: By EMERSE itself--used internally by EMERSE

Population Frequency: In real time by EMERSE

What is the proper description of this table? (useful to know if someone wanted to query it)

Column name Description Required or

Optional
id Primary Key --
type A string indicating the top level category of attestation. RSA indicates session is used for research. OTH

means other usage. Research attestations will have an associated row in RESEARCH_ATTESTATION. If the
type is OTH, a row will also exist in OTHER_ATTESTATION_REASON.

--

User_session_id A foreign key reference to the user_session table --

Table: VALID_RES_STUDY_STATUS

Population: By System Admin. Only needed if research studies need to be validated.

Population Frequency: May only need to be done once, at the time of system setup. May need
periodic updates if the source data (such as from IRB system) defining study status is changed.

EMERSE contains a simple table defining study statues. The statuses that are initially populated
in the system (loaded up in the build script) are unique to the University of Michigan (that is,
they were developed locally and are implemented in our separate electronic IRB tracking
system) and other implementations would have to have their own set of valid statuses if these
were to be used to validate and approve usage for research. If the status of a research study is
not in this table, EMERSE will not allow the study to be used for attestation; that is, the study
would not even be displayed to the user to select.

Column
name

Description Required or
Optional

status A list of study statuses that EMERSE considers valid in terms of allowing a user to proceed. These statuses are
generally defined by the IRB and are universal across studies.

Required

VALID_RES_STUDY_STATUS Table Example

STATUS
Exempt Approved - Initial
Approved
Not Regulated
Exempt Approved – Transitional

Table: OTHER_ATTESTATION_REASON

Population: ???

Population Frequency: ???

For non-research attestations, there is a lookup table called OTHER_ATTESTATION_REASON
that lists available options. These can be configurable by each institution, and may include
commonly used access reasons that don’t involve research (such as quality improvement,
patient care, etc). These options (other than the Free text reason) can be used to populate
“quick buttons” that provide a simple way for a user to click on one of the common reasons for
use.

Column name Description Required or Optional
USER_KEY ?? what is it used for? Required ??

DESCRIPTION Foreign key reference to row in LOGIN_ACCOUNT table Required ??
DELETED FLAG Has this reason been deleted? (0=no, 1= yes) Required ??

OTHER_ATTESTATION_REASON Table Example
USER_KEY DESCRIPTION DELETED_FLAG
FRETXT Free Text Reason 0
RVPREPRES Review Preparatory to Research 0
STDYDESC Study involving only decedents (deceased

patients)
0

Table: ATTESTATION_OTHER (Not customizable--used internally by EMERSE)

The free text reason that users entered is stored in a table called ATTESTATION_OTHER. This is
populated by EMERSE and is not customizable by users.

Column name Description Required or

Optional
SESSION_ATTESTATION_ID A unique ID for the session attestation. Used for audit logging. Required ??

FREE_TEXT_REASON The free text reason that a user entered. Required ??
OTHER_ATTEST_REASON_KEY The attestation reason as it is listed in USER_KEY column of the

OTHER_ATTESTATION_REASON table.
Required ??

ATTESTATION_OTHER Table Example

SESSION_ATTESTATION_ID FREE_TEXT_REASON OTHER_ATTEST_REASON_KEY
50208 Testing out the system FRETXT
52060 Testing out the system FRETXT
46051 Looking up a patient in clinic FRETXT
71052 infection control monitoring FRETXT
74107 cancer registry operational work FRETXT

Clinical Documents

EMERSE search is enabled by the indexing of clinical text documents by Apache Solr.
Documents in a clinical environment can come from a myriad of sources like transcription,
Radiology, and Pathology, or from an electronic health record. Normally the structure, data, and
metadata related to these documents from different sources varies considerably. To simplify
things, we configure Solr with a single document schema containing a congolmerate of all fields
from all sources. Common data elements, such as patient MRN, clinical date, and source
primary key are used across many sources thus are mapped to the same Solr schema field.
Search results for each source are displayed in a separate tab in the UI.

Overview:

Figure. Entity relationship diagram showing how the three tables above are related.

Table: DOCUMENT_INDEX

Each source of documents (e.g., pathology, radiology, primary EHR, legacy EHR, etc.) is listed
as a row in the document_index table. The EMERSE application searches and displays the
results based on document source. Document sources normally differ in their format and
metadata depending on the source of origin. Each row in this table corresponds to a column in
the “Overview” display within EMERSE, and as a subset of documents when a patient is
selected.

Column name Description Required or

Optional
lucene_name the name of the document source. This field needs to be unique and search results are displayed on

separate tabs for each source.

Required

user_description is the description for the source of document. This field is used when printing individual documents
obtained from a search, so that the document source is printed on the document.

Required

compound_key_flag This flag is present for historic reasons and will be deprecated in future releases.
Note:

Lucene indexing requires that each document has a unique identifier. So, when indexing, the fields that
uniquely identify a document need to be concatenated and indexed as RPT_ID. For example, when we
indexed Radiology documents we used a combination of document Id and exam description to uniquely
identify documents. These fields are concatenated using ‘|’ and then indexed as RPT_ID.

Required??

default_sort_column is the document field to use to sort the search results for each patient Required
display_name is the name displayed in the UI Required
display_prefix is the prefix used by UI components. This can be anything, but each source must have a unique

display_prefix.
Required

display_order is the order in which sources appear in the result summary tabs. Each row should have a distinct
display order.

Required

DOCUMENT_INDEX Table Example

Shown here is a table with sample document_index table data containing three different
document sources:

lucene_name user_description compound_key_flag default_sort_column display_name display_prefix display_order

DMI Central transcription
document 0 Case Date CareWeb dmi 0

Radiology Radiology Documents 0 Report Date Radiology rad 1
Pathology Pathology Document 0 Last Updated Pathology path 2

Table: DOCUMENT_FIELDS

This table provides EMERSE with information about what fields are available in the underlying
Solr/Lucene index, their data type, and additional metadata. Each field indexed with Solr/Lucene
should exist in this table for each source system in the document_index table. The column
EMR_INTENT is linked to the name field of the doc_field_emr_intent mapping table. The
column DOC_INDEX_LUC_NAME is linked to the lucene_name field of the document_index
table.

Each document source should contain at least six rows (see ‘EMR Intent’ and the
doc_field_emr_intent table below for the six required types). One for each type as defined
in document fields table. Additional fields can be specified using the generic EMR_INTENT
options of TEXT or DATE. These additional/optional metadata fields are used by EMERSE for
display in the UI but are not used by Solr/Lucene.

Column name Description Required or

Optional
LUCENE_NAME name that corresponds with the Solr document field . The names of the fields are specified

in schema.xml file
Required

DATATYPE Mainly used by the UI Should be either “Text” or “Date” Required
DISPLAY_ORDER order in which fields need to appear in the search results Required
DISPLAY_NAME name that appears in the UI Required
EMR_INTENT specifies the intent of the field. This refers to the fields defined in the

doc_field_emr_intent table.
Required

DOC_INDEX_LUC_NAME specifies the document type key from document_index table

Required
DISPLAY_FLAG flag that controls if the field is displayed when document is displayed Required
SUMMARY_DISPLAY_FLAG flag that controls if the field is displayed in search results summary page Required

DOCUMENT_FIELDS Table Example:
Shown below is an example document_fields table for three different document sources:
LUCENE_NAME DATA

TYPE
DISPLAY
_ORDER

DISPLAY_
NAME

EMR_
INTENT

DOC_INDEX_
LUC_NAME

DISPLAY
_FLAG

SUMMARY_DISPLAY_
FLAG

MRN Text 0 MRN MRN DMI 0 0

RPT_TEXT Text 1 Report Text RPT_TEXT DMI 0 0
RPT_TEXT_NOIC Text 2 Report Text RPT_TEXT_NOIC DMI 0 0

ID Text 3 Report ID RPT_ID DMI 1 1
LAST_UPDATED Date 4 Last Updated LAST_UPDATED DMI 1 0
CASE_DATE Date 5 Case Date CLINICAL_DATE DMI 1 1
MRN Text 0 MRN MRN PATHOLOGY 0 0
RPT_TEXT Text 1 Report Text RPT_TEXT PATHOLOGY 0 0
RPT_TEXT_NOIC Text 2 Report Text RPT_TEXT_NOIC PATHOLOGY 0 0
ID Text 3 Report Id RPT_ID PATHOLOGY 1 1
LAST_UPDATED Date 4 Last Updated LAST_UPDATED PATHOLOGY 1 1
DR_NUM Text 5 Doctor Num TEXT PATHOLOGY 1 1
COLLECTION_DATE Date 6 Collection Date CLINICAL_DATE PATHOLOGY 1 0
MRN Text 0 MRN MRN RADIOLOGY 0 0
RPT_TEXT Text 1 Report Text RPT_TEXT RADIOLOGY 0 0
RPT_TEXT_NOIC Text 2 Report Text RPT_TEXT_NOIC RADIOLOGY 0 0

ID Text 3 Report ID RPT_ID RADIOLOGY 1 1
LAST_UPDATED Date 4 Last Updated LAST_UPDATED RADIOLOGY 1 0
SVC_CD Text 5 Service Code TEXT RADIOLOGY 1 0
DR_NUM Text 6 Doctor Num TEXT RADIOLOGY 1 0
RPT_DATE Date 7 Report Date CLINICAL_DATE RADIOLOGY 1 1

Table: DOC_FIELD_EMR_INTENT (Generally not customizable--used internally by EMERSE)

This is a lookup table for the column EMR_INTENT in the previously defined
document_fields table. This table does not normally need to be edited. It is used by the
system to help map various sources and types of data to the intended uses of those data by the
system. The values contained in the name field of this table are listed below.

Note: The first 6 items are required for the Solr/Lucene indexer to work, the next two are
optional, and the final one is no longer used.

Column name Description DEFAULT_LUCENE_NAME Required or

Optional
MRN patient medical record number, which is a unique patient identifier

MRN Required

RPT_ID Unique document identifier. This must be unique across all documents and
sources

ID Required

CLINICAL_DATE Date when the clinical event occurred. Often this would be considered the “note
date”

ENCOUNTER_DATE Required

LAST_UPDATED Date when the document was last updated, since changes are sometimes made
to documents

LAST_UPDATED Required

RPT_TEXT The actual text of the clinical document. This field is used by Lucene for lower-
case indexing (case-insensitive searching).

RPT_TEXT Required

RPT_TEXT_NOIC A copy of the document text to be indexed using a case-sensitive Lucene filter
(NOIC = NO Ignore Case)

RPT_TEXT_NOIC Required

TEXT Any generic text field. Note that a document may have multiple of these types of
generic text fields (e.g., clinical service, document type, clinician name, etc).
This is useful when additional metadata are associated with the document and
should be displayed.

 Optional

DATE Any generic date field, since a document may have more than one kind of date
associated with it.

 Optional

ENCOUNTER_ID This is no longer used. It had been used for a time to search across all patients
without limiting it to a set of medical record numbers.

 No longer
used

Table: LUCENE_SHARDS

Updating: Deprecated--no longer used

Descriptive information is being maintained here until the table is completely removed from the
EMERSE system. EMERSE initially used Shards to help with performance, but in no longer
does. If this were ever implemented again it would be better to do so using Solr Cloud.

EMERSE used to use this table to locate Solr/Lucene indexes that were available. For most
users running EMERSE on a single server, having one row in this table pointing to a single
Solr/Lucene index yields adequate performance for 1-2TB indexes with 100’s of millions of
documents.

Column name Description Required or Optional
ID The Lucene name of the index Required
PARENT_DOC_INDEX Specifies the document type key from document_index table. This used to refer

to a specific shard.
Optional (Needed when using multiple
shards)

START_DATETIME Start date of clinical documents in this shard Required
END_DATETIME End date of clinical documents in this shard Required

LUCENE_SHARDS Table Example

ID PARENT_DOC_INDEX START_DATETIME END_DATETIME
Unified (null) 01.02.2008 00:00:00 31.12.2099 00:00:00

	

	

	

	

Additional Details

Error Logging

EMERSE system errors can be found in the tomcat_install_dir/logs directory. They will
be in a file called catalina.out as well as a file called emerse.log. Logging is controlled by
a log4j.properties file which can be found inside of the expanded emerse.war file.

	

Date Ranges

Our local experience at the University of Michigan has shown that legacy documents coming
from older systems may sometimes have invalid document dates. This led to unusual dates
being displayed when no date limitation was placed on the search criteria (e.g., “01/01/1900”).

To circumvent this potential problem EMERSE provides two options for controlling the dates
displayed to users. In general, background tasks that update the Lucene indexes would also
update the date ranges for documents when all dates are selected (that is, when no date range
is entered into the date range boxes in the user interface). This is so that as the index updates
every night a new ‘end date’ can be shown for the date range of the documents.

This auto-update setting can be over-ridden for the start and stop dates, independently, in the
main configuration file, project.properties. Changing this setting can, for example, allow
one to have a more sensible document start date that more closely matches when the
documents were being collected (without having to actually change the dates of all of the
incorrect documents).

Note that changing these dates only affects the dates displayed to users. If actual dates are
entered by users into the stop/date boxes, those dates will be used. If no dates are entered by
users (thus, searching ‘All dates’) then the system will search across all of the documents
regardless of the over-ride date shown in the UI and regardless of the document dates in the
system.

Security: System Timeouts

The user interface supports system timeouts for periods of inactivity. This is configurable by the
system administrators. Timeout is configured in index.html using the JavaScript plugin
idleTimeout.

An example code snippet is below:

$.idleTimeout('#timeoutdialog', 'div.ui-dialog-buttonpane button:first', {

idleAfter: 3600, // user is considered idle after 60 minutes of no movement
pollingInterval: 300, // a request to keepalive.php (below) will be sent to the server every 5 minute
warningLength: 300, // display warning for 5 minutes
keepAliveURL: './keepalive.html',
serverResponseEquals: 'OK', // the response from keepalive.php must equal the text "OK"
onTimeout: function(){

 }

Note: This is a configuration parameter that we would like to move to a more easily modifiable
location at some point

	

	

Linking the EHR to EMERSE

At the University of Michigan we have
developed a link between our vendor
EHR (Epic) and EMERSE. A user in
Epic can open a patient tab (workspace)
and then find the EMERSE button in the
‘More Activities’ menu. Selecting the
EMERSE button will automatically open
a browser window with the Epic user
automatically logged into EMERSE, and
with the specific patient loaded into
EMERSE and ready for searching.

Security details about how the data and
user’s credentials are passed from Epic
to EMERSE will vary for each institution.
However, the documentation on the Epic
site regarding “Integrating External Web
Applications into Epic” is an ideal place
to start learning about how to do such
integrations.

Figure. Partial mocked up/simplified screen showing
where the EMERSE activity can be found. Here a patient
workspace is open, the More Activities button is selected,
and an arrow is pointing to the EMERSE option.

Figure. This screen shot of EMERSE shows the first screen a user will encounter when accessing
EMERSE from Epic. This is the page where users can enter their reason for using EMERSE for that
session, or select from previously entered reasons. In the case of the Epic ! EMERSE link, we

automatically fill in the option “Search from MiChart” for the user, since our Epic instance is called
“MiChart”. However, the user can change it to something more appropriate or specific if desired.

Figure. This screen shot from EMERSE shows the patient already entered in EMERSE, because the
medical record number had been passed from Epic to EMERSE.

Known Bugs and Issues

Because EMERSE relies on other open source software, we have identified bugs that we are
not able to readily fix. These currently include:

[March 2015]
The ‘Advanced Search’ feature sends a standard Lucene query without any interpretation or
modification by EMERSE. We have found that for complex Boolean queries the system does
retrieve the documents correctly, but the separate Highlighter component does not properly
highlight based on the Boolean query. Rather it will highlight any terms it finds in the query
regardless of the Boolean operation.

The screen shot below demonstrates this. The document was retrieved because ‘hypertension’
and ‘diabetes’ were found together in the document. Note that the term ‘cardiac’ does not
appear in the document, but ‘back pain’ was still highlighted.

